“ASR:2014-12-08”版本间的差异
来自cslt Wiki
(→Domain specific LM) |
|||
(1位用户的4个中间修订版本未显示) | |||
第1行: | 第1行: | ||
+ | ==Speech Processing == | ||
+ | === AM development === | ||
+ | |||
+ | ==== Environment ==== | ||
+ | * Already buy 3 760GPU | ||
+ | * grid-9/12 760GPU crashed again; grid-11 shutdown automatically. | ||
+ | * Change 760gpu card of grid-12 and grid-14(+). | ||
+ | |||
+ | ==== Sparse DNN ==== | ||
+ | * Performance improvement found when pruned slightly | ||
+ | * need retraining for unpruned one; training loss | ||
+ | * details at http://liuc.cslt.org/pages/sparse.html | ||
+ | * HOLD | ||
+ | |||
+ | ==== RNN AM==== | ||
+ | * Initial nnet seems not very well, need to be pre-trained or test lower learn-rate. | ||
+ | * For AURORA 4 1h/epoch, model train done. | ||
+ | * Using AURORA 4 short-sentence with a smaller number of targets.(+) | ||
+ | * Adjusting the learning rate.(+) | ||
+ | * Trying toolkit of Microsoft.(+) | ||
+ | * details at http://liuc.cslt.org/pages/rnnam.html | ||
+ | * Reading papers | ||
+ | |||
+ | ==== A new nnet training scheduler ==== | ||
+ | * Initial code done. No better than original one considering of taking much more iterations. | ||
+ | * details at http://liuc.cslt.org/pages/nnet-sched.html | ||
+ | * done. | ||
+ | |||
+ | ====Drop out & Rectification & convolutive network==== | ||
+ | |||
+ | * Drop out(+) | ||
+ | :* AURORA4 dataset | ||
+ | |||
+ | :* Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout | ||
+ | :** Problem 1) The effect of dropout in different noise proportion; | ||
+ | <pre> | ||
+ | No. | data & config | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 1 | clean-std | 6.74 | 28.77 | 31.84 | 14.24 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 2 | clean-dropout0.8 | 6.78 | 25.89 | 26.45 | 12.57 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 3 | noise-20%-std | 6.76 | 14.74 | 14.32 | 8.87 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 4 | noise-20%-dropout0.8 | 7.01 | 14.51 | 13.61 | 9.22 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 5 | noise-100%-std | 9.03 | 11.21 | 11.44 | 7.96 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | 6 | noise-100%-dropout0.8| 8.87 | 11.58 | 12.22 | 8.38 | | ||
+ | --------------------------------------------------------------------------------------------------- | ||
+ | </pre> | ||
+ | 2) The effect of MPE in different noise proportion; | ||
+ | 3) The effect of MPE+dropout in different noise proportion. | ||
+ | :**http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=261 | ||
+ | |||
+ | :** Find and test unknown noise test-data.(++) | ||
+ | :** Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time. | ||
+ | |||
+ | * MaxOut(+) | ||
+ | :* pretraining based maxout, can't use large learning-rate. | ||
+ | :** Select units in Groupsize interval, but need low learn-rate | ||
+ | |||
+ | * SoftMaxout | ||
+ | |||
+ | * P-norm | ||
+ | :* Need to solve the too small learning-rate problem | ||
+ | :** Add one normalization layer after the pnorm-layer | ||
+ | |||
+ | * Convolutive network (+) | ||
+ | :* AURORA 4 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | nonlda | %WER |Dnn l-u | pool size-step| cnn dim-step-num | cnn_init_opts | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std | 5.73 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 | ||
+ | | | | | |--input_dim~patch-dim1 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_cnnunit_384 | 5.85 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-384 |--patch-dim1 8 | ||
+ | | | | | |--num-filters2 384 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_patchdim1_5 | 5.92 | 4 - 1200 | 3 - 3 | 5-1-128 512-128-256 |--patch-dim1 5 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_patchdim1_11 | 6.05 | 4 - 1200 | 3 - 3 | 11-1-128 512-128-256 |--patch-dim1 11 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_delta_1 | 5.98 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_delta_2 | 6.05 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_layer_3 | 6.00 | 4 - 1200 | 3 - 3 3 - 1 | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_layer_3_2 | 5.85 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_layer_3_3 | 5.73 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 512-256-512 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_layer_3_4 | 5.96 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 256-256-512 |--patch-dim1 8 | ||
+ | -------------------------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | ====DAE(Deep Atuo-Encode)==== | ||
+ | (1) train_clean | ||
+ | drop-retention/testcase(WER)| test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-xEnt-sigmoid-baseline| 6.04 | 29.91 | 27.76 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std+dae_cmvn_noFT_2-1200 | 7.10 | 15.33 | 16.58 | 9.23 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std+dae_cmvn_splice5_2-100 | 8.19 | 15.21 | 15.25 | 9.31 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | :* test on XinWenLianBo music. results on | ||
+ | :** http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhaomy&step=view_request&cvssid=318 | ||
+ | |||
+ | ====Denoising & Farfield ASR==== | ||
+ | * ICASSP paper submitted. | ||
+ | * HOLD | ||
+ | |||
+ | ====VAD==== | ||
+ | * Harmonics and Teager energy features being investigation (++) | ||
+ | |||
+ | ====Speech rate training==== | ||
+ | * Data ready on tencent set; some errors on speech rate dependent model. error fixed. | ||
+ | * Retrain new model(+) | ||
+ | |||
+ | ====Scoring==== | ||
+ | * Timber Comparison done. | ||
+ | * harmonics based timber comparison: frequency based feature is better. done | ||
+ | * GMM based timber comparison is done. Similar to speaker recognition. done | ||
+ | * TODO: Code checkin and '''technique report'''. done | ||
+ | |||
+ | ====Confidence==== | ||
+ | * Reproduce the experiments on fisher dataset. | ||
+ | * Use the fisher DNN model to decode all-wsj dataset | ||
+ | * preparing scoring for puqiang data | ||
+ | * HOLD | ||
+ | |||
+ | ===Speaker ID=== | ||
+ | * Preparing GMM-based server. | ||
+ | * EER ~ 4% (GMM-based system)--Text independent | ||
+ | * EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent | ||
+ | * test different number of components; fast i-vector computing | ||
+ | |||
+ | ===Language ID=== | ||
+ | * GMM-based language is ready. | ||
+ | * Delivered to Jietong | ||
+ | * Prepare the test-case | ||
+ | |||
+ | ===Voice Conversion=== | ||
+ | * Yiye is reading materials(+) | ||
+ | |||
+ | |||
==Text Processing== | ==Text Processing== | ||
===LM development=== | ===LM development=== | ||
第4行: | 第152行: | ||
====Domain specific LM==== | ====Domain specific LM==== | ||
* domain lm | * domain lm | ||
− | + | :* Sougou2T : kn-count continue . | |
− | :* Sougou2T : kn-count. | + | :* lm v2.0 set up('''this week''') |
− | :* lm v2.0 | + | |
* new dict. | * new dict. | ||
:* Released vocab v2.0 (mainly done by Dongxu) to JieTong. | :* Released vocab v2.0 (mainly done by Dongxu) to JieTong. | ||
− | + | ::* using minimum size segmentation and artificial add the long word(like 中华人民共和国) | |
:* check the v2.0-dict with small data. | :* check the v2.0-dict with small data. | ||
2014年12月8日 (一) 08:43的最后版本
目录
Speech Processing
AM development
Environment
- Already buy 3 760GPU
- grid-9/12 760GPU crashed again; grid-11 shutdown automatically.
- Change 760gpu card of grid-12 and grid-14(+).
Sparse DNN
- Performance improvement found when pruned slightly
- need retraining for unpruned one; training loss
- details at http://liuc.cslt.org/pages/sparse.html
- HOLD
RNN AM
- Initial nnet seems not very well, need to be pre-trained or test lower learn-rate.
- For AURORA 4 1h/epoch, model train done.
- Using AURORA 4 short-sentence with a smaller number of targets.(+)
- Adjusting the learning rate.(+)
- Trying toolkit of Microsoft.(+)
- details at http://liuc.cslt.org/pages/rnnam.html
- Reading papers
A new nnet training scheduler
- Initial code done. No better than original one considering of taking much more iterations.
- details at http://liuc.cslt.org/pages/nnet-sched.html
- done.
Drop out & Rectification & convolutive network
- Drop out(+)
- AURORA4 dataset
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
- Problem 1) The effect of dropout in different noise proportion;
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
No. | data & config | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | --------------------------------------------------------------------------------------------------- 1 | clean-std | 6.74 | 28.77 | 31.84 | 14.24 | --------------------------------------------------------------------------------------------------- 2 | clean-dropout0.8 | 6.78 | 25.89 | 26.45 | 12.57 | --------------------------------------------------------------------------------------------------- 3 | noise-20%-std | 6.76 | 14.74 | 14.32 | 8.87 | --------------------------------------------------------------------------------------------------- 4 | noise-20%-dropout0.8 | 7.01 | 14.51 | 13.61 | 9.22 | --------------------------------------------------------------------------------------------------- 5 | noise-100%-std | 9.03 | 11.21 | 11.44 | 7.96 | --------------------------------------------------------------------------------------------------- 6 | noise-100%-dropout0.8| 8.87 | 11.58 | 12.22 | 8.38 | ---------------------------------------------------------------------------------------------------
2) The effect of MPE in different noise proportion; 3) The effect of MPE+dropout in different noise proportion.
- Find and test unknown noise test-data.(++)
- Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
- MaxOut(+)
- pretraining based maxout, can't use large learning-rate.
- Select units in Groupsize interval, but need low learn-rate
- pretraining based maxout, can't use large learning-rate.
- SoftMaxout
- P-norm
- Need to solve the too small learning-rate problem
- Add one normalization layer after the pnorm-layer
- Need to solve the too small learning-rate problem
- Convolutive network (+)
- AURORA 4
-------------------------------------------------------------------------------------------------------------------------- nonlda | %WER |Dnn l-u | pool size-step| cnn dim-step-num | cnn_init_opts -------------------------------------------------------------------------------------------------------------------------- cnn_std | 5.73 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 | | | | |--input_dim~patch-dim1 -------------------------------------------------------------------------------------------------------------------------- cnn_cnnunit_384 | 5.85 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-384 |--patch-dim1 8 | | | | |--num-filters2 384 -------------------------------------------------------------------------------------------------------------------------- cnn_patchdim1_5 | 5.92 | 4 - 1200 | 3 - 3 | 5-1-128 512-128-256 |--patch-dim1 5 -------------------------------------------------------------------------------------------------------------------------- cnn_patchdim1_11 | 6.05 | 4 - 1200 | 3 - 3 | 11-1-128 512-128-256 |--patch-dim1 11 -------------------------------------------------------------------------------------------------------------------------- cnn_delta_1 | 5.98 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 -------------------------------------------------------------------------------------------------------------------------- cnn_delta_2 | 6.05 | 4 - 1200 | 3 - 3 | 8-1-128 512-128-256 |--patch-dim1 8 -------------------------------------------------------------------------------------------------------------------------- cnn_layer_3 | 6.00 | 4 - 1200 | 3 - 3 3 - 1 | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8 -------------------------------------------------------------------------------------------------------------------------- cnn_layer_3_2 | 5.85 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8 -------------------------------------------------------------------------------------------------------------------------- cnn_layer_3_3 | 5.73 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 512-256-512 |--patch-dim1 8 -------------------------------------------------------------------------------------------------------------------------- cnn_layer_3_4 | 5.96 | 4 - 1200 | 3 - 3 2 - 2 | 8-1-128 512-128-256 256-256-512 |--patch-dim1 8 --------------------------------------------------------------------------------------------------------------------------
DAE(Deep Atuo-Encode)
(1) train_clean drop-retention/testcase(WER)| test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-xEnt-sigmoid-baseline| 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_noFT_2-1200 | 7.10 | 15.33 | 16.58 | 9.23 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_splice5_2-100 | 8.19 | 15.21 | 15.25 | 9.31 ---------------------------------------------------------------------------------------------------------
- test on XinWenLianBo music. results on
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
- Harmonics and Teager energy features being investigation (++)
Speech rate training
- Data ready on tencent set; some errors on speech rate dependent model. error fixed.
- Retrain new model(+)
Scoring
- Timber Comparison done.
- harmonics based timber comparison: frequency based feature is better. done
- GMM based timber comparison is done. Similar to speaker recognition. done
- TODO: Code checkin and technique report. done
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
- HOLD
Speaker ID
- Preparing GMM-based server.
- EER ~ 4% (GMM-based system)--Text independent
- EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent
- test different number of components; fast i-vector computing
Language ID
- GMM-based language is ready.
- Delivered to Jietong
- Prepare the test-case
Voice Conversion
- Yiye is reading materials(+)
Text Processing
LM development
Domain specific LM
- domain lm
- Sougou2T : kn-count continue .
- lm v2.0 set up(this week)
- new dict.
- Released vocab v2.0 (mainly done by Dongxu) to JieTong.
- using minimum size segmentation and artificial add the long word(like 中华人民共和国)
- check the v2.0-dict with small data.
tag LM
- summary done
- need to do
- tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (hold)
- make a summary about tag-lm and journal paper(wxx and yuanb)(this weeks).
- Reviewed papers and begin to write paper (this week)
RNN LM
- rnn
- test wer RNNLM on Chinese data from jietong-data(this week)
- generate the ngram model from rnnlm and test the ppl with different size txt.[1]
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.(hold)
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
Knowledge vector
- Knowledge vector started
- Analysis the wiki infomation of category and link into jso done, knowledge vector build graph done.
- begin to code for train
relation
- Accomplish transE with almost the same performance as the paper did(even better)[2]
Character to word
- Character to word conversion(hold)
- prepare the task: word similarity
- prepare the dict.
Translation
- v5.0 demo released
- cut the dict and use new segment-tool
QA
deatil:
Spell mistake
- add the xiaoI pingyin correct to framework.
improve fuzzy match
- add Synonyms similarity using MERT-4 method(hold)
improve lucene search
- using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.(liurong this month)
- now test the performance.
Multi-Scene Recognition
- done
XiaoI framework
- ner from xiaoI
- new inter will install SEMPRE
patent
- done