“Document classification test”版本间的差异
来自cslt Wiki
(→Document classification of Sougou data) |
(→VSM Test) |
||
第41行: | 第41行: | ||
|- | |- | ||
! ACC-test | ! ACC-test | ||
− | | 0.72139 || 0.72139 || 0.75124 || 0.82089 || 0.79602 || 0.61194 || 0.70647 || 0.79104 || 0.72913 | + | | 0.72139 || 0.72139 || 0.75124 || 0.82089 || 0.79602 || 0.61194 || 0.70647 || 0.64179|| 0.79104 || 0.72913 |
|- | |- | ||
! ACC-train | ! ACC-train |
2014年9月9日 (二) 06:17的版本
目录
Problem And Solve
Document classification of Sougou data
- DATA
- Data from SougouLab [1],using SogouC.reduced(30M)
- 9-Classes:财经,IT,健康,体育,旅游,教育,招聘,文化,军事
- train and test: train(),test(),dev()
- Text preprocessing
- Segment word using wordlist of 9W.(tencent)
- Remove stop word.stop_wordlist is
- Some Tools
- weka
- scw
- google word2ve
- LDA
- class map
C000007 汽车 C000008 财经 C000010 IT C000013 健康 C000014 体育 C000016 旅游 C000020 教育 C000022 招聘 C000023 文化 C000024 军事
VSM Test
- Data
- dimension:9402
- Method
- document reprenstion: use the tf-idf weight for word weight
- classifier: Native Bayes
- Result
财经 | IT | 健康 | 体育 | 旅游 | 教育 | 招聘 | 文化 | 军事 | sum | |
---|---|---|---|---|---|---|---|---|---|---|
ACC-test | 0.72139 | 0.72139 | 0.75124 | 0.82089 | 0.79602 | 0.61194 | 0.70647 | 0.64179 | 0.79104 | 0.72913 |
ACC-train | 0.678 | 0.718 | 0.708 | 0.708 | 0.73 |