“Text-2014-08-21”版本间的差异
来自cslt Wiki
| (相同用户的一个中间修订版本未显示) | |||
| 第1行: | 第1行: | ||
| − | + | GloVe: | |
1. 文中所包含的word vector: | 1. 文中所包含的word vector: | ||
a) Skip-gram | a) Skip-gram | ||
| 第20行: | 第20行: | ||
捷通反馈: | 捷通反馈: | ||
1. 在仅仅用 Lucene 做 extraction进行算法匹配的情况下,有足够多的模板能够达到85%以上的准确率。 | 1. 在仅仅用 Lucene 做 extraction进行算法匹配的情况下,有足够多的模板能够达到85%以上的准确率。 | ||
| + | |||
Build Reading List模块 | Build Reading List模块 | ||
| + | |||
| + | recorded by Chao Xing | ||
2014年8月22日 (五) 00:58的最后版本
GloVe:
1. 文中所包含的word vector:
a) Skip-gram
b) CBOW
==> Both can find in word2vec
c) vLBL
d) ivLBL
==> Both can find in the paper Learning word embeddings efficiently with noise-contrastive estimation.
e) HPCA
==> which can find in the paper Word Embeddings through Hellinger PCA.
2. 不同的task:
a) Word analogies.
b) Word similarity.
==> 评价集合:WordSim-353、MC、RG、SCWS、RW
c) Named entity recognition.
==> 评价集合:CoNLL-2003, ACE Phase 2,ACE-2003.
3. 需要做的工作:
a) 寻找不同的task
b) 比较各种word vector的性能
捷通反馈:
1. 在仅仅用 Lucene 做 extraction进行算法匹配的情况下,有足够多的模板能够达到85%以上的准确率。
Build Reading List模块
recorded by Chao Xing