

Machine Learning Methods For Stock Selection

Yang Wang wangyang@cslt.riit.tsinghua.edu.cn

Introduction

- There are are some systemic risk in the market that are difficult to predict.
- To avoid these risk, we can find some excess returns (alpha returns) and hedge.
 - Long a basket and short a basket.
 - Use financial derivatives
- Some factors contains the information of alpha returns

Multifactor Strategy

- Task : {f₁,...,f_n} -> {s₁,...,s_m}, where f_i is the ith factor, s_j is the jth stock.
- Artificial method: Scoring the stocks
- ML method:
 - Regression
 - Classification

Multifactor with ML

- Regression: select the top-k according to the predicted returns
 - Pros:
 - Can describe the returns
 - Cons:
 - Vulnerable to noise
 - Can not describe the confidence

Multifactor with ML

- Classification: select the top-k according to the confidence
 - Pros:
 - Can describe the confidence
 - Robust to noise
 - Cons:
 - Can not describe the returns

Solution: discretize the returns and use multiclassification

- Motivation :
 - Many investors have no support from profession teams so they are used to trade according to indicator.
 - The process can be described by a tree

- Algorithm
- Gini不纯度

Gini =
$$\sum_{k=1}^{K} P(m, k) (1 - P(m, k))$$

• Feature importance analysis:

 $importance(f_i) = \sum_{node} gini_{\downarrow}$

- Overfitting control:
 - Limit the depth
 - Limit the number of leaf nodes
 - Limit the minimum of examples for splitting
 - Limit the minimum decrease of Gini

SVM

- Goal :
 - Separate the different class points as wide as possible

SVM

• Objective function:

$$\begin{split} \min_{w,b,\zeta} \frac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i \\ \text{subject to } y_i (w^T \phi(x_i) + b) \geq 1 - \zeta_i, \\ \zeta_i \geq 0, i = 1, ..., n \end{split}$$

Experiments

- Setting:
 - Change position every month
 - Window size for training
 - Decision tree: i-24~i-1 month
 - SVM: i-30~i-1 month
 - Portfolio size (uniformly)
 - CSI300: 20
 - ZZ500: 30
 - Bid price: vwap

Decision Tree (CSI300): Performance model_wealth 2.00 index_wealth hedge_wealth 1.75 Profits: 110.98% 1.50 Sharpe ratio: 0.62 1.25 Max drawdown : 20%

Decision Tree (ZZ500): Performance model_wealth index_wealth 2.5 hedge_wealth Profits: 121.96% 2.0 Sharpe ratio: 0.47 Max drawdown : 35% 1.5 1.0 0.5

Conclusion & Future Work

- ML methods can achieve a not bad results.
- SVM is more robust than decision tree for multifactor-based strategy
- CSI300 is more stable and ZZ500 is more profitable
- A more detailed and realistic backtesting need to be done
- Good combination of CSI300 and ZZ500 will be valuable

Thank you for your attention!

wangyang@cslt.riit.tsinghua.edu.cn