
Language recognition on unknown channels:
the LORIA-Inria-MULTISPEECH system for AP20-OLR Challenge
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Abstract
We describe the LORIA-Inria-MULTISPEECH submitted sys-
tem for the oriental language recognition AP20-OLR Chal-
lenge. This system has been specifically designed to be robust
to an unknown channel (task 1). Three sets of experiments have
been carried out: training of multilingual bottleneck features,
selection of robust features by evaluating language recognition
performance on an unobserved channel, and design of the fi-
nal models with recipes that take advantage of channel diver-
sity within the training set. Key factors for channel robustness
are data augmentation techniques, stochastic weight averaging,
and regularization of TDNNs with domain robustness loss func-
tions. The final system is the combination of four TDNNs and
one GMM model. It achieve a Cavg of 0.0156 for matched
conditions and 0.0382 for mismatched conditions, on our de-
velopment sets.
Index Terms: language recognition, channel mismatch, do-
main generalization

1. Introduction
Language recognition [1] is the task of predicting the lan-
guage used in a test speech utterance. State-of-the-art language
recognition systems are based on automatic training and con-
sequently highly depend on the training data sets. A drop in
performance is expected from a domain shift of the test data,
such as channel mismatch. Various techniques have been intro-
duced to reduce the impact of domain shift over language recog-
nition systems: design of robust features, data augmentation of
the training set, feature-based adaptation in an embedding space
and model-based adaptation of the classifier.

The Oriental Language Recognition (OLR) Challenge has
been organized for the last five years with the goal of boosting
research on language recognition technology [2, 3, 4, 5]. The
AP2020-OLR edition [6] focuses on three tasks: cross channel
language identification (task 1), dialect identification (task 2)
and noisy language identification (task 3). The LORIA-Inria-
MULTISPEECH team focused on improving robustness to un-
known conditions in order to compete for task 1. Since the noisy
language identification problem can also be addressed with do-
main robustness methods, we also submit a system for task 3.
We did not participate in task 2.

Three sets of experiments have been carried out to design
a robust language recognition system. First, we trained ro-
bust frame-level bottleneck features, with a recipe based on an
end-to-end speech recognition model (Section 3). Then, in or-
der to simulate conditions of the evaluation, we trained several
utterance-level classifiers with different recipes, without using
training data from the unknown channels, and evaluated their
performance on the unknown channel. We call this step op-
timization for system robustness. Finally, we trained several
systems on a large dataset including data from unknown chan-

nels, and merged their prediction in order to increase robustness.
This step is called the final system design. For each step specific
training and testing sets have been used, they are described in
Section 2. Results for each set of experiments are presented and
discussed in Section 7.

The submitted system is the same for task 1 and 3. It is con-
stituted of the fusion of five models: one GMM model (Section
5) and four TDNNs (Section 4), trained with bottleneck features
and different loss functions. We propose a new recipe for train-
ing multilingual bottleneck features from a Conformer model
[7], artificial data augmentation techniques abiding by the rules
of the challenge and stochastic weight averaging [8] to increase
generalization of the model. Other key factors that have been
investigated on our development sets are the combination of
models with different properties and a duration-dependent cali-
bration [9].

2. Use of data
2.1. Corpora

The training data contains 16 languages. The 10 traditional
languages of the OLR evaluation are Cantonese, Mandarin,
Indonesian, Japanese, Russian, Korean, Vietnamese, Kazakh,
Tibetan, and Uyghur. Only these languages are provided
with transcriptions in the sets AP16-OL7 and AP17-OL3. In
addition, recordings for three Chinese dialects are provided:
Hokkien, Sichuanese, and Shanghainese. Moreover three non
target languages of previous evaluations are provided: Catalan,
Greek, and Telugu.

Of key interest are the sets that contain recordings from
unknown channels: AP19-OLR-dev-task2 and AP19-OLR-test-
task2. They only contain 6 languages: Japanese, Russian, Viet-
namese, Tibetan, Mandarin and Uyghur. These constitute the
development languages. It means that we do not have access
to recordings from unknown channels for three of the six lan-
guages of task 1: Cantonese, Indonesian and Korean. Conse-
quently, we designed a two-step strategy to use this data first
for evaluating performance on unknown channels (optimization
for system robustness ) and then to increase the diversity of the
training set (final system design).

As mentioned before, the system has been designed in sev-
eral steps. Train, validation and test datasets used for each step
are described in Table 1.

1. training of bottleneck features. We use recordings from
the ten traditional languages with their transcriptions.

2. optimization for system robustness. In order to repli-
cate the unknown channel evaluation conditions, we de-
sign systems using data from mobile channels only. We
evaluate them on three datasets: test-2018 (with mobile
channel data), dev-2019 and test-2019 (with unknown
channel data). To focus on the channel mismatch prob-
lem, we only use the 6 development languages.



Table 1: Use of datasets for each set of experiments. val. refers
to validation.

Dataset
bottleneck optimization final
features for system system

robustness design
AP16-OL7 train & val. train & val. train & val.
AP17-OL3 train & val. train & val. train & val.
AP17-test train & val. train & val.

AP18-test test-2018 train & val.
& test-2018

AP19-dev-task2 dev-2019 test-2019
AP19-dev-task3 dev-2019 train & val.

AP19-test-task1 test-2019 train & val.
& test-2019

AP19-test-task2 test-2019 train & val.
AP19-test-task3 test-2019 train & val.

AP20-dialect train & val.

3. final system design. At the final stage of training, once
we have selected training recipes robust to channel mis-
match, we increase further diversity of the training set
by adding data from unknown channels. We train the
system with 16 languages. This allows us to evaluate the
system for three different sets of languages: development
languages, languages of task 1 and languages of task 3.
We use two test sets: test-2018 (with only mobile chan-
nel data) and test-2019 (with unknown channel data).

When an original dataset is split into several datasets for our
experiments, we use speaker labels (when available) to ensure
that all recordings of the same speaker belong to the same set.

2.2. Data augmentation

To improve the robustness of the systems to channel mismatch,
we trained them with three data augmentation techniques. To
abide by the rules of the challenge, we did not use any additional
speech corpus and only used other files of the training corpus or
generated artificial noise or filters. The three data augmentation
methods are: addition of white noise, addition of babble noise
(sampled by mixing other files of the training set) and convo-
lution with random artificial band-pass filters. We also applied
the specAugment strategy [10] during training.

3. Frame-level features
We experimented with different frame-level features during the
evaluation. To compare them, we trained a standard time delay
neural network (TDNN - Section 4) [11] for language recog-
nition with the datasets defined for the optimization for system
robustness experiments. We explored two kinds of frame-level
features: spectral features and bottleneck features (BNFs).

3.1. Spectral features

Mel-filterbank features and mel-frequency cepstral coefficients
(MFCCs) were evaluated. When used without any domain ro-
bustness technique, restriction to the telephone bandwidth (300-
3800 Hz) was shown useful. No significant gain was achieved
by adding pitch features [12].

The Gaussian mixture model (GMM) system employs
shifted delta coefficients (SDCs) features computed with short-
term feature MFCCs [13]. The MFCCs are extracted from

speech frames of 20 ms with shift of 50% and 16 filters in mel
scale. We process the extracted MFCCs with relative spectral
(RASTA) processing for removing slowly varying channel ef-
fect. Then we compute SDCs with shift of three frames and
context of seven to create 128-dimensional MFCC-SDC fea-
tures.

For all systems, we applied energy-based speech activity
detector (SAD) to discard the non-speech frames. Finally, we
found utterance-level cepstral mean and variance normalization
(CMVN) helpful for robustness.

3.2. Bottleneck features

Multilingual bottleneck features [14] are very efficient frame-
level features for language recognition. Usually, forced align-
ment between frame-level acoustic features and transcriptions is
performed by an automatic speech recognition system for each
target language. Then simple neural networks are trained to
predict for each frame the assigned phone or triphone. An em-
bedding is extracted from an intermediate bottleneck layer of
the system.

In this work, we did not invest time resources to develop an
acceptable automatic speech recognition system for each target
language with the goal of performing forced phone alignment.
Conversely we trained a unique multilingual end-to-end speech
recognition system with the connectionist temporal classifica-
tion (CTC) loss [15]. We used the Conformer architecture [7]
with an output layer specific to each target language, with 64
Mel-filterbank features as input. The ten traditional languages
were used for training the Conformer model. A sentence piece
model [16] was trained on the training transcriptions to define
2000 target tokens for each language. Finally we extracted
frame-level embeddings from the output of the encoder of the
Conformer model and used them as language recognition fea-
tures. We used a small architecture with two Conformer blocks
and four attention heads.

4. Neural network training
The segment-level classification task can be performed by a
neural network. First the general training recipe was selected
according to experiments with the datasets defined for optimiza-
tion for system robustness. For this set of experiments, we kept
data from unkown channels for evaluation of the system.

Then several systems were trained using the datasets de-
fined for the final system design, with regularization loss func-
tions that benefit from training data from unknown channels.
Experiments were performed with the toolkits Pytorch and
Keras.

4.1. Architecture

The standard time delay neural network (TDNN) architecture
for language recognition [11] was used in this work.

4.2. Training recipe

The final training recipe includes:
• the cross-entropy (CE) loss function
• stochastic gradient descent with dropout [17]
• specAugment [10]
• the three data augmentation techniques described in Sub-

section 2.2
• stochastic weight average (SWA) [8]. It consists of aver-

aging parameters of the model along the trajectory of the
gradient descent.



4.3. Exploring other loss functions

At the final stage, we used the final system design datasets with
training data from unknown channels. Consequently, we trained
systems with different loss functions to reduce the domain mis-
match:

• additive angular margin softmax (AAM) [18] as an alter-
native classification loss function

• regularization of the cross-entropy with maximum mean
discrepancy (MMD) between mobile channel and un-
known channels [19], we compared different weights λ
for the regularization loss functions

• regularization of the cross-entropy with n-pair loss [20]

5. Gaussian mixture model training
As an alternative utterance-level model, we chose the GMM-
based model as this gives promising language recognition accu-
racy for short test utterances [1]. This statistical approach was
also traditionally used in NIST language recognition evalua-
tions (LREs) and could be helpful by providing complementary
information to the neural network based methods. Language-
dependent GMMs are trained using 4096 mixture components
and ten iterations of the expectation-maximization (EM) algo-
rithm. During scoring, we compute the log-likelihoods corre-
sponding to each target language models separately.

6. Fusion and calibration
Standard linear multi-class calibration and score fusion are per-
formed for each task with the FoCal toolkit [21]. This step is
performed on the validation set defined for the final system de-
sign. The final scores are log-likelihood ratio.

For the selected final combination of systems, we imple-
mented a duration-dependent calibration procedure [9]. For
three ranges of duration (inferior to 2s, between 2 and 4s, su-
perior to 4s), we learned specific fusion and calibration param-
eters. For test utterances, the duration is estimated thanks to the
energy-based SAD module mentioned in Section 3.

7. Experiments
In this section, we report the main results that lead to the design
of the submitted system.

7.1. Bottleneck features training

We used the bottleneck features datasets. Models are compared
with the average CTC loss for the 10 target languages on the
validation set, cf. Table 2. We observe that the combination of
cepstral mean and variance normalization (CMVN), specAug-
ment and data augmentation allows to train better speech recog-
nition features. We use these features in the final system.

Table 2: Automatic speech recognition performance in terms of
CTC loss for different training recipes

System name Training recipe CTC-loss on
validation set

Baseline Mel filterbank features 3.94
+ CMNV 3.69
+ specAug 3.52

Final + data augmentation 3.02

(a) Test 2018: known channel

(b) Test 2019: unknown channels

Figure 1: DET curves of final systems for task 1. We compare
four systems including the final submission.

7.2. Optimization for system robustness experiments

During the optimization for system robustness experiments, we
train language recognition systems without using training data
from unknown channels. Performance is measured with the
equal error rate (EER) on three test sets: test-2018 (mobile
channel), dev-2019 and test-2019 (which contain recordings
from unknown channels), with the 6 development languages,
cf. Table 3.

Our experiments demonstrate the superiority of the trained
bottleneck features over mel filterbanks and MFCCs. BNFs
trained with a recipe aiming at robustness (final BNFs) are supe-
rior to baseline BNFs for the challenging dev-2019 set. Finally,
for all models, SWA was superior to model selection based on
the best validation loss.

7.3. Final system design experiments

To design the final system we trained various models with
a large dataset containing data from 16 languages, including
recordings from unknown channels. We calibrated them on the



Table 3: Language recognition performance for domain robustness experiments. Equal error rate (%) on test sets.

input features Training recipe test-2018 dev-2019 test-2019
Mel filterbanks data augmentation 11.95 25.48 29.54

MFCCs data augmentation 4.75 37.78 24.34
Baseline BNF data augmentation 3.91 19.11 11.08

Final BNF data augmentation 3.43 17.24 13.68
Final BNF data augmentation + SWA 2.97 16.92 12.78

Table 4: Comparison of final systems - Cavg × 100

models Task 1 Task 3
validation 2018 2019 validation 2018 2019

in
di

vi
du

al
m

od
el

s CE, optimization for system robustness datasets 3.94 5.60 10.30 3.48 5.91 9.25
CE, system design datasets 2.50 4.69 7.26 2.04 4.34 7.16

AAM 3.68 3.14 5.34 3.87 3.20 6.25
n-pair 3.22 5.73 7.25 2.58 5.14 7.36

MMD λ = 1 3.18 5.39 7.87 2.93 4.99 8.31
MMD λ = 100 4.01 5.89 7.60 3.76 5.24 7.29

GMM 3.31 2.53 10.82 3.00 2.69 13.97

co
m

bi
na

tio
n

of
m

od
el

s

AAM - GMM 1.37 1.54 4.37 1.35 1.45 5.73
AAM - GMM - MMD 100 0.98 1.57 3.91 1.00 1.60 4.96

AAM - GMM - MMD 100 - n-pair 0.94 1.50 3.77 0.99 1.66 4.57
AAM - GMM - MMD 100 - n-pair - MMD 1 0.93 1.53 3.67 0.97 1.60 4.54

duration-dependent calibration 1.56 3.82 1.61 4.60

corresponding validation datasets and evaluated them on two
datasets in terms of Cavg [6]: test-2018 (with mobile channel
data only), test-2019 (with some unknown channel recordings).
Evaluation is performed for two sets of languages correspond-
ing to task 1 and task 3. Results are presented in Table 4.

For comparison, we present performance of a TDNN
trained with cross-entropy loss with the optimization for system
robustness datasets. All other models are trained with the final
system design datasets and achieve better performance. The best
performance is achieved by the TDNN trained with AAM loss.
TDNNs trained with regularization loss functions (MMD and
n-pair) do not improve on the test sets but the performance gap
between known and unknown channels is reduced. Finally, the
GMM model achieves the best performance on matched condi-
tions but is very sensitive to channel mismatch.

Then, starting with the model with best performance, we
greedily add models to the final system. Fusion is performed
with a linear fusion of the scores. We select the combination
of five systems: four TDNNs based on BNFs trained with ad-
ditive angular margin softmax, regularization with maximum
mean discrepancy with low and high weight values (λ), regular-
ization with n-pair loss and one GMM model using MFCCs.

The interest of combining different systems can be under-
stood thanks to the DET curves presented in Figure 1. For
known conditions (Figure 1a), the best performance of individ-
ual systems is achieved by the GMM model. Fusion with the
TDNN trained with AAM helps to improve performance but the
addition of three other TDNNs trained with domain robustness
objectives does not improve further. Conversely, for unknown
conditions (Figure 1b), the TDNN trained with AAM is better
than the GMM model. The fusion of both is also helpful and
the fusion with three other robust models allows an additional
gain in performance.

Finally, we learn the fusion and calibration parameters for
each task for three different duration ranges. At test time, we
use the fusion parameters corresponding to the speech duration

of the test utterance. Even though this technique was not ben-
eficial for our test sets, we suspect that it is because we mainly
have short duration utterances in 2018 and 2019 test data. Since
we do not know the duration distribution of the test sets, we
calibrate our system for different durations.

8. Conclusion
The Oriental Language Recognition AP20-OLR Challenge was
a good opportunity to evaluate the domain generalization abil-
ity of training recipes of language recognition systems. In this
work, we propose a combination of two ideas: selecting robust
features by evaluating their performance on an unknown chan-
nel and using the different channels of the training set to enforce
invariance of the models to a change of channel, with the hope
of generalizing to new unknown channels. In the first step, we
selected multilingual bottleneck features extracted from a Con-
former speech recognition model trained with data augmenta-
tion methods. In the second step, we showed the effectiveness
and complementarity of different loss functions to train lan-
guage recognition models.

The difficulty of task 1 is generalization to a new channel.
By definition of the task, we were not able to perform a reliable
estimation of our performance since we do not have access to
development data from the target channels. We are looking for-
ward to the evaluation results in order to evaluate our two-step
strategy which aims at leveraging diversity within the training
data. We plan to validate the methods explored during this eval-
uation in a more controlled scenario with other language recog-
nition corpora, to understand better the impact of unbalanced
data for different channels and languages.
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