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Abstract

For text-independent short-utterance speaker recognition (SUSR), the
performance often degrades dramatically. This paper presents a combination
approach to the SUSR tasks with two phonetic-aware systems: one is the
DNN-based i-vector system and the other is our recently proposed
subregion-based GMM-UBM system. The former employs phone posteriors to
construct an i-vector model in which the shared statistics offers stronger
robustness against limited test data, while the latter establishes a
phone-dependent GMM-UBM system which represents speaker characteristics
with more details. A score-level fusion is implemented to integrate the respective
advantages from the two systems. Experimental results show that for the
text-independent SUSR task, both the DNN-based i-vector system and the
subregion-based GMM-UBM system outperform their respective baselines, and
the score-level system combination delivers performance improvement.
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1 Introduction
After decades of research, current text-independent speaker recognition (SRE) sys-

tems can obtain rather good performance, if the test utterances are sufficiently

long [1, 2, 3]. However, if the utterances are short, serious performance degradation

is often observed. For instance, Vogt et al. [4] reported that when the test speech

was shortened from 20 seconds to 2 seconds, the performance degraded sharply in

terms of equal error rate (EER) from 6.34% to 23.89% on a NIST SRE task. The

performance degradation seriously limits the application of SRE in practice, since

long-duration test would impact user experience significantly, and in many situa-

tions it is very difficult, if not possible, to collect sufficient test data, for example in

forensic applications. How to improve performance of speaker recognition on short

utterances (SUSR) is an open research topic.

A multitude of studies have been conducted in SUSR. For example, in [5], the

authors showed that the performance on short utterances can be improved by JFA.

This work was extended in [6] which reported that the i-vector model can distill

speaker information in a more effective way so it is more suitable for SUSR. In

addition, a score-based segment selection technique was proposed in [7]. A relative

EER reduction of 22% was reported by the authors on a recognition task where the

test utterances were shorter than 15 seconds in length.
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We argue that the difficulty associated with text-independent SUSR can be largely

attributed to the mismatched distributions of speech data between enrollment and

test. Assuming that the enrollment speech is sufficiently long, so the speaker model

can be well trained. If the test speech is sufficient as well, the distribution of the test

data tends to match the distribution represented by the speaker model; however, if

the test speech is short, then only a part of the probability mass represented by the

speaker model can be covered by the test speech. For a GMM-UBM system, this is

equal to say that only a few Gaussian components of the model are covered by the

test data, and therefore the likelihood evaluation is biased. For the i-vector model,

since the Gaussian components share some statistics via a single latent variable, the

impact of short test speech is partly alleviated. However, the limited data anyway

leads to insufficient evaluation of the Baum-Welch statistics, resulting in a less

reliable i-vector inference.

A possible solution for the text-independent SUSR problem is to identify the

phone content of the speech signal, and then model and evaluate speakers on in-

dividual phones. We call this ‘phonetic-aware’ approach. This approach can be

regarded as a transfer from a text-independent task to a text-dependent task. The

latter is certainly more resilient to short utterances, as has been demonstrated in [8].

Two phonetic-aware approaches have been proposed. One is the subregion model

based on the GMM-UBM architecture [9], and the other is the DNN-based i-vector

model [10, 11]. Both the two approaches employ an automatic speech recognition

(ASR) system to generate phone transcriptions or posteriors for enrollment speech,

and then establish a phonetic-aware speaker model based on the transcriptions or

posteriors. These two approaches, however, are different in model structure and im-

plementation. The subregion modeling approach builds multiple phone-dependent

UBMs and speaker GMMs, and evaluates test speech on the phone-dependent mod-

els. The DNN-based i-vector approach, in contrast, keeps the single UBM/GMM

framework, but relates each Gaussian component to a phone or a phone state. The

former tends to be more flexible when learning speaker characteristics, while the

latter is more robust against limited test data, due to the low-dimensional latent

variable that is shared among all the Gaussian components. We therefore argue that

the two approaches can be combined, so that the respective advantages of the two

methods can be integrated.

The rest of the paper is organized as follows: Section 2 discusses some related work,

Section 3 presents the subregion model, and Section 4 describes the combination

approach. Section 5 presents the experiments, and the entire paper is concluded in

Section 6.

2 Related work
The idea of employing phonetic information in speaker recognition has been in-

vestigated by previous research studies. For instance, Omar et al. [12] proposed

to derive UBMs from Gaussian components of a GMM-based ASR system, with

a K-means clustering approach based on the symmetric KL distance. The DNN-

based i-vector method was proposed in [10, 11]. In the work, posteriors of senones

(context-dependent states) generated by a DNN trained for ASR were used for

model training as well as i-vector inference. Note that all these studies focus on



Li et al. Page 3 of 9

relatively long utterances (5-10 seconds), whereas our study in this paper focuses

on utterances as short as 0.5 seconds.

3 Subregion modeling
We briefly describe the subregion model presented by us recently [9]. The basic idea

is firstly presented, and then the implementation details are described.

3.1 Acoustic subregions

The conventional GMM-UBM system treats the entire acoustic space as a whole

probabilistic space, and computes the likelihood of an input speech signal by a

GMM model, formulated as follows:

p(x; s) =
∏
t

∑
c

P (c)N (xt;µ
s
c,Σc)

where x denotes the speech signal, andN (x;µ,Σ) represents a Gaussian distribution

with µ as the mean and Σ as the covariance matrix. Further more, c indexes the

Gaussian component, and s indexes the speaker. P (c) is a prior distribution on

the c-th component. Roughly speaking, this model splits the acoustic space into a

number of subregions, and each subregion is modelled by a Gaussian distribution.

There are at least three potential problems with this model: (1) the subregion

splitting is based on unsupervised clustering (via the EM algorithm [13]), so it is

not necessarily meaningful in phonetic; (2) each subregion is modeled by a Gaussian,

which seems too simple; (3) the priors over the subregions are fixed, independent

of xt.

The subregion model was proposed to solve these problems. Firstly, the acous-

tic space is split into subregions that roughly correspond to phonetic units (e.g.,

phones); secondly, each subregion is modelled by a GMM instead of a single Gaus-

sian; thirdly, the weight for each subregion is based on the posterior P (c|xt) instead

of the prior P (c). This is formulated as follows:

p(x; s) =
∏
t

∑
c

P (c|xt)
∑
k

πc,kN (xt;µ
s
c,k,Σc,k)

where k indexes the Gaussians within a subregion GMM. A key component of this

model is the posterior probability P (c|xt), which is not a pre-trained constant value,

but an assignment of each signal xt to the subregions. In our study, this quantity

is generated by an ASR system.

3.2 Speech units

The inventory of speech units varies for different languages. In Chinese, the language

focused in this paper, Initials and Finals (IF) are the most commonly used [14].

Roughly speaking, Initials correspond to consonants, and Finals correspond to vow-

els and nasals. Among the IFs, Finals are recognized to convey more speaker related

information [15, 16], and therefore are used as the speech units in this study.
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Using Finals to train the subregion model is not very practical, because there

is a large number of Finals, and most Finals can only find limited data in both

training and test. A possible solution is to cluster similar units together and build

subregion models based on the resulting speech unit classes. In this study, we develop

a vector quantization (VQ) method based on the K-means algorithm to conduct the

clustering.

3.3 Subregion modeling based on speech unit classes

Denote the speech unit classes (Final clusters) by {SUC-c,c= 1, ..., C}, a subregion

UBM can be trained for each SUC-c with the training data that are aligned to the

Finals in SUC-c by the ASR system. The subregion UBM of class SUC-c is denoted

by λUBM
c . The speaker-dependent subregion GMMs can be trained based on the

subregion UBMs, using the enrollment data that have been aligned to the Finals of

each cluster.

Once the speaker-dependent subregion GMMs are trained, a test utterance can

be scored on each subregion. Suppose a test utterance contains L Finals according

to the decoding result of speech recognition, and denote the speech unit class of

the l-th Final by c(l). Further denote the speech segment of this unit by Xl, and

its length is Tl. The score of Xl is measured by the log likelihood ratio between the

subregion speaker-dependent GMM λsc(l) and the subregion UBM λUBM
c(l) , where s

denotes the speaker. This is formulated by:

ϕs,l = log p(Xl|λsc(l))− log p(Xl|λubmc(l) )

Finally, the score of the entire utterance can be computed as the average of the

subregion-based scores.

4 System combination
In this section, we first describe the difference between the subregion model and

another phonetic-aware method: the DNN based i-vector model. Then the combi-

nation system is presented.

4.1 DNN-ivector and subregion model

The DNN-based i-vector approach proposed by Lei and colleagues [10] replaces

GMM-based posteriors by DNN-generated posteriors when computing the Baum-

Welch statistics for model training and i-vector inference. The DNN model is trained

for speech recognition, so the output targets correspond to phones or states. This

essentially builds a UBM and speaker GMMs where the Gaussian components cor-

respond to phones or states. This is quite similar as the subregion model, though

the model structures of the two models are different. On one hand, the subregion

model builds GMMs for each subregion, while the DNN-based i-vector approach

still assumes Gaussian for each subregion. From this aspect, the subregion model

tends to be more flexible and represents speaker characteristics with more details.

On the other hand, the subregions in the subregion modeling are relatively inde-

pendent, whereas the subregions in the DNN-ivector model share statistics via the

latent variable (i-vector). This sharing may lead to more strong robustness against

limited test data.



Li et al. Page 5 of 9

4.2 Score-level system combination

Due to the difference of the two phonetic-aware models and their prospective advan-

tages, it is reasonable to combine them together. The combination system involves

three components. Firstly, a DNN model for ASR is trained and used to generate

the phonetic information: phone posteriors and phone alignments. Secondly, the

phone posteriors are used to train the DNN-based i-vector model, and the phone

alignments are used to build the subregion model. Thirdly, when scoring a test

speech, the scores derived from the DNN-ivector system and the subregion GMM-

UBM system are averaged to make the final decision. Fig. 1 illustrates the system

framework.
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Figure 1 The diagram of the score-level system combination.

5 Experiments
5.1 Database

5.1.1 Database for evaluation (SUD12)

There is not a standard database for performance evaluation on text-independent

SUSR tasks. Therefore, we firstly designed and recorded a database that is suitable

for SUSR research and published it for research usage[1]. The database was named

as “SUD12” [9] [17], and was designed in the principle to guarantee sufficient IF

coverage. In order to focus on short utterances and exclude other factors such as

the channel and emotion, the recording was conducted in the same room and with

the same microphone, and the reading style was neutral. The database consists of

28 male speakers and 28 female speakers, and all the utterances are in standard

Chinese. For each speaker, there are 100 Chinese sentences, each of which contains

15 ∼ 30 Chinese characters. The sampling rate is 16 kHz with 16-bits precision.

[1]http://www.cslt.org/resources.php?Public%20data
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The enrollment database involves all the 56 speakers. For each speaker, the effec-

tive speech signals for enrollment is about 35 seconds. The test database consists

of 56 speakers, and each speaker involves 62-63 short utterances that cover all the

Finals. The length of each utterance is not more than 2 seconds and mostly as short

as 0.5 seconds. With the test database, 3, 523 target trials and 197, 293 non-target

trials are defined for performance evaluation.

5.1.2 Database for UBM training (863DB)

The speech data used to train the UBMs, subregion UBMs and T-matrix were

chosen from the 863 Chinese speech corpus. The 863 database was well designed

to cover all the Chinese IFs, so it is particularly suitable to train subregion UBMs

based on Final classes. All the recordings are at a sampling rate of 16 kHz, and the

sample precision is 16 bits. In this study, we choose 17 hours of speech data and

denote the database by 863DB.

5.2 Experimental conditions

The Kaldi toolkit [18] was used to conduct the experiments. Following the stan-

dard recipe of SRE08, the acoustic feature was the conventional 60-dimensional

Mel frequency cepstral coefficients (MFCCs), which involved 20-dimensional stat-

ic components plus the first and second order derivatives. The frame size was 25

ms and the frame shift was 10 ms. Besides, a simple energy-based voice activity

detection (VAD) was performed before the feature extraction.

The ASR system used to generate the phone alignment was a large-scale DNN-

HMM hybrid system. The system was trained using Kaldi following the WSJ S5

recipe. The feature used was 40-dimensional Fbanks. The basic features were spliced

by a window of 11 frames, and an LDA (linear discriminative analysis) transfor-

m was applied to reduce the dimensionality to 200. The DNN structure involved

4 hidden layers, each containing 1, 200 hidden units. The output layer contained

6, 761 units, corresponding to the number of GMM senones. The DNN was trained

with 6, 000 hours of speech signals, and the decoding employed a powerful 5-gram

language model trained on 2 TB text data.

We chose the conventional GMM-UBM approach to construct the baseline SUSR

system. The UBM consisted of 1, 024 Gaussian components and was trained with the

863DB. The SUD12 was employed to conduct the evaluation. With the enrollment

data, the speaker GMMs were derived from the UBM by MAP, where the MAP

adaptation factor was optimized so that the EER on the test set was the best. For

comparison, a GMM-based i-vector system was also constructed. The training was

based on the same UBM model as the GMM-UBM system, and the dimensionality

of the i-vector was 400.

For the DNN-based i-vector system, the DNN model was trained following the

same procedure as the one used for the ASR system, but with less number of

senones. In our experiments, the number was 928, comparable to the number of

Gaussian components of the GMM-UBM system. The dimensionality of the DNN-

based i-vectors was set to 400.
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5.3 Basic results

We first investigated the subregion model based on speech unit classes. For this

model, the number of speech unit classes need to be defined before hand. In our

experiments, we observed that either too small or too large clustering numbers lead

to suboptimal performance, and the optimal setting in our experiment was C=6 [9].

Table I shows the derived unit classes. It can be seen that the resultant clusters are

intuitively reasonable.

Table 1 Speech unit classes derived by k-means clustering.

Class Speech Units

1 a, ao, an, ang, ia, iao, ua

2 e, ei, ai, i, ie, uei, iii

3 iou, ou, u, ong, uo, o

4 v, vn, ve, van, er

5 en, ian, uan, uen, uai, in, ii, ing

6 eng, iang, iong, uang, ueng

The results in terms of EER are presented in Table II, where ‘GMM-UBM’ is the

GMM-UBM baseline system, ‘SBM-DD’ denotes the subregion modeling system

(C=6). ‘GMM i-vector’ denotes the traditional GMM-based i-vector system with

cosine distance metric, and ‘DNN i-vector’ denotes the DNN-based i-vector system

with cosine distance metric.

We first observe that both the subregion modeling system and the DNN-based

i-vector system outperform their relative baselines (‘GMM-UBM’ and ‘GMM-based

i-vector’) in a significant way. This confirms the effectiveness of the two phonetic-

aware methods. Besides, it can be seen that the GMM-UBM baseline outperforms

the two i-vector systems, but after the probabilistic linear discriminant analysis

(PLDA) [19] is employed, the i-vector system is improved and outperforms the

GMM-UBM system.

Table 2 Performance of phonetic-aware methods

System EER (%)

GMM-UBM 28.97

GMM-SBM 22.74

GMM i-vector 39.91

DNN i-vector 29.61

DNN i-vector + PLDA 19.16

Combination system 17.43

5.4 System combination

We combine the ‘DNN i-vector + PLDA’ system and the ‘SBM-DD’ system by

a linear score fusion: αsplda + (1 − α)ssbm, where α is the interpolation factor.

Fig. 2 presents the performance with various α. It clearly shows that the system

combination leads to better performance than each individual system. Fig. 2 shows

that α=0.94 is a good choice. Table II has shown the results of the combination

system with this configuration.
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Figure 2 Performance of score-level system combination with the interpolation factor α.

6 Conclusions
This paper presents a combination system to deal with short utterances in text-

independent speaker recognition. This system combines two phonetic-aware meth-

ods: one is the DNN-based i-vector system and the other is the subregion-based

GMM-UBM system. The experimental results show that both the DNN-based i-

vector system and the subregion-based GMM-UBM system outperforms their re-

spective baselines, and a simple score fusion leads to the best performance we have

obtained so far. The strategy presented in this paper has been verified in and applied

to the Mobile banking of CCB (China Construction Bank) and has been achieving

good performance. Future work involves combination of feature-based and model-

based compensations for short utterances, and investigation on phone-discriminative

methods.
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