Speaker Recognition with Cough, Laugh and "Wei"

Miao Zhang & Yixiang Chen

Outline

- Background and significance
- Deep feature learning
- Experiments
- Results and discussions
- Further work

Background

Linguistic sound Natural sound inspiratory sound expiratory sound vocal cord non-related vocal cord related Oral cavity resonance nasal cavity resonance

①上層	②上齿	③齿龈
④硬腭	⑤软腭	⑥小舌
⑦下暦	⑧下齿	⑨舌尖
①舌面	①舌根	②咽头
③咽壁	@会厌	③声带
0气管	切食道	③鼻孔
发音	器官示;	图

Background

• Different spectra of trivial events cough, laugh and Wei

Background

Almost all existing automatic speaker recognition(SRE) approaches work on long and clear linguistic content such as "Hello, Google".

╋

Very little has been done on these trivial events in SRE (short duration & significantly different pronunciation & no large-scale specific database)

solution

With the deep feature learning structure, strong speaker features can be learnt from a very short segment (about 0.3second)

Significance

Answer three questions:

• Does a particular trivial event involve speaker information?

• Can the speaker information, if exists in a trivial event, be extracted from the event speech?

• Can the deep feature model trained with a regular speech database be migrated to recognize trivial event segments?

Deep feature learning

CT-DNN model can learn speaker sensitive features, which is highly discriminative and can be used to achieve impressive performance when the test utterances are extremely short.

Experiment

About database

Train with the *Fisher* speech database and construct the test database with recording.

DATA PROFILE OF CSLT-COUGH100

1	Spks	Total Utts	Utts/Spk	Avg. dur
Cough	104	890	8.6	0.27s
Laugh	104	904	8.7	0.33s
"Wei"	104	848	8.2	0.37s

•About data

Every speaker has three types of events and every event contains 5-10 segments, with the most common 7-10.

Experiment

•An i-vector system was constructed as the baseline system

•The d-vector system uses the CT-DNN architecture

•Use t-SNE to investigate feature discrimination with the three types of events

 D-vector system has general better performance than i-vector system.

EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

		EER%		
Systems	Metric	Cough	Laugh	"Wei"
i-vector	Cosine	19.96	23.03	12.72
	LDA	23.55	24.24	12.90
	PLDA	23.33	24.30	13.77
d-vector	Cosine	11.19	13.62	10.66
	LDA	12.37	13.41	10.75
	PLDA	10.99	13.76	10.06

The feature-based approach is more powerful.

 For i-vector system, the performance on "Wei" is good, and the performance on cough and laugh is significantly reduced.

EER% Metric Cough "Wei" Systems Laugh Cosine 19.96 23.03 12.72 i-vector 23.55 24.24 12.90 LDA 23.33 24.3013.77 PLDA 10.66 Cosine 11.19 13.62 d-vector 12.37 LDA 13.41 10.75 PLDA 10.99 13.76 10.06

EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

The i-vector model cannot extract the information in trivial events (cough and laugh) well

 For d-vector system, the best performance is on Wei, but the performance on cough and laugh is not significantly reduced.

		EER%		
Systems	Metric	Cough	Laugh	"Wei"
i-vector	Cosine	19.96	23.03	12.72
	LDA	23.55	24.24	12.90
	PLDA	23.33	24.30	13.77
d-vector	Cosine	11.19	13.62	10.66
	LDA	12.37	13.41	10.75
	PLDA	10.99	13.76	10.06

EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

 Non-linguistic events still involve rich speaker information
The d-vector system could deal with them better.

 For d-vector system, the performance on laugh is slightly worse than on cough.

Laugh speech involve significant within-speaker variations related to vocal tract modulation.

EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

		EER%		
Systems	Metric	Cough	Laugh	"Wei"
i-vector	Cosine	19.96	23.03	12.72
	LDA	23.55	24.24	12.90
	PLDA	23.33	24.30	13.77
d-vector	Cosine	11.19	13.62	10.66
	LDA	12.37	13.41	10.75
	PLDA	10.99	13.76	10.06

Discussion

Result

 For both two systems, the discriminative normalization approaches, LDA and PLDA, did not provide clear advantage.

EER% "Wei" Systems Metric Cough Laugh i-vector Cosine 19.96 23.0312.72 23.55 LDA 24.2412.90 23.33 PLDA 24.3013.77d-vector Cosine 11.19 13.62 10.66 LDA 12.37 13.4110.75 PLDA 10.9913.76 10.06

LDA and PLDA models trained with the regular speech database are not very suitable.

EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

Result

•Wei

The learned features are reasonably discriminative for speakers.

• cough and laugh There are still variations.

Conclusion

A satisfying performance!!

In spite of the extremely short duration and lack of linguistic information, the EER can be as low as 10%-14%, depending on the type of events.

Conclusion

• Does a particular trivial event involve speaker information?

Yes.

At least for the three trivial events studied in this paper, rich speaker information is involved.

• Can the speaker information, if exists in a trivial event, be extracted from the short segment?

Yes. The deep feature approach was capable of extracting the speaker information from the short and idiocratic trivial events.

• Can the deep feature model trained with a regular speech database be migrated to recognize trivial event segments?

Yes. A DNN model trained with the Fisher database worked well on trivial event SRE.

Further work

- How about the performance on other trivial events (every type referred in background), and which one is most discriminative?
- What is the implication of the experimental results for the acoustic and linguistic research?
- How the performance will be in a true scenario of speech disguise?

