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Abstract—Neural networks (NNs) have been demonstrated to
be useful in a broad range of applications such as image recogni-
tion, automatic translation and advertisement recommendation.
State-of-the-art NNs are known to be both computationally and
memory intensive, due to the ever-increasing deep structure,
i.e., multiple layers with massive neurons and connections (i.e.,
synapses). Sparse neural networks have emerged as an effective
solution to reduce the amount of computation and memory
required. Though existing NN accelerators are able to efficiently
process dense and regular networks, they cannot benefit from
the reduction of synaptic weights.

In this paper, we propose a novel accelerator, Cambricon-X,
to exploit the sparsity and irregularity of NN models for in-
creased efficiency. The proposed accelerator features a PE-based
architecture consisting of multiple Processing Elements (PE). An
Indexing Module (IM) efficiently selects and transfers needed
neurons to connected PEs with reduced bandwidth requirement,
while each PE stores irregular and compressed synapses for
local computation in an asynchronous fashion. With 16 PEs, our
accelerator is able to achieve at most 544 GOP/s in a small form
factor (6.38mm

2 and 954mW at 65 nm). Experimental results
over a number of representative sparse networks show that our
accelerator achieves, on average, 7.23x speedup and 6.43x energy
saving against the state-of-the-art NN accelerator.

I. INTRODUCTION

Due to stringent energy constraints, hardware accelerators

have emerged as an energy efficient alternative of CPUs and

GPUs [1]–[6]. Traditionally, accelerator is thought to target

a narrow application scope. However, recent investigations

in both academia and industry have shown that a small

set of algorithms such as neural networks (NNs) have been

state-of-the-art across a broad range of applications including

image/video/audio recognition, automatic translation, adver-

tisement recommendation, and so on [7]–[10], which makes

the NN accelerators possible to achieve a promising trade-off

between efficiency and practicability. Hence, researchers have

proposed a number of NN accelerators [3], [11]–[14].

However, existing accelerators may suffer from extremely

large sizes of NNs, especially considering that the sizes of

NN continue to increase for better accuracy. For example,

AlexNet, proposed by Krizhevsky et al. [15] in 2012, has

650 kilo neurons, and the number further increased to ∼1

million as reported by Le et al. [16], or even several millions

reported by Coates et al. [17] in 2013. The amounts of synaptic

weights are even much higher: 60 million in [15], 1 billion

in [16], and 10 billion in [17]. As the large amounts of synaptic

weights incur intensive computation and memory accesses,

efficiently processing large-scale neural networks with existing

NN accelerators remains a challenging problem.

To address the challenge of overwhelming neurons and

synapses, researchers have proposed a number of effective

techniques to make an NN sparse (i.e., reducing the number

of neurons and synapses) while maintaining the accuracy of

the original NN, including dropout in training [18], sparse

representation [19]–[21], and sparsity cost function [19], [20],

[22]. Figure 1 shows the neurons and synapses of a fully-

connected MLP (multilayer perceptron), as well as its sparse

counterpart after pruning. In the sparse MLP, as the values

of a number of synapses are zero, such synapses can be

removed from the perspective of computation. After synapse

pruning, the neurons without input or output connections can

be removed as well. Thus, the neurons and synapses in the

sparse NN are much fewer than the original dense MLP.

Recently Han et al. [23] have proposed a pruning technique

to shrink the amount of synaptic weights by about 10x with

negligible accuracy loss.

Interestingly, dramatically reducing the amount of synapses

does not necessarily improve the performance and energy

efficiency of existing accelerators, which are good at process-

ing regular and dense neural networks but lack of dedicated

support for irregular and sparse models. For example, by using

a state-of-the-art sparse library such as cuSPARSE [24], we

found that the GPU can only process a sparse AlexNet with

6.99 million synaptic weights 1.78x faster than the original

AlexNet with 59.48 million synaptic weights. A state-of-the-

art NN accelerator, DianNao [11], even cannot benefit from

the sparsity of NNs at all, since all the pruned synaptic weights978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



Fig. 1. (a) A fully-connected MLP. (b) A sparse MLP.

still have to be fed into the accelerator with zero values for

unnecessary computation.

In this paper, we propose a novel accelerator which can

efficiently cope with not only original dense neural networks

but also heavily pruned sparse ones1. The accelerator features

a PE-based architecture consisting of multiple processing

elements (PEs) companied with a buffer controller (BC), so

as to exploit the sparsity and irregularity of NN models.

Specifically, the BC integrates an efficient indexing module

for selecting only needed neurons from centralized neuron

buffers, and then transfers such neurons to connected PEs with

reduced bandwidth requirement. After receiving such neurons,

the PEs can perform efficient computation with locally stored

compressed synapses. Moreover, due to irregular distribution

of synapses, multiple PEs can work in an asynchronous fashion

to gain increased efficiency.

We evaluate our accelerator, Cambricon-X, with a number

of representative NNs (including LeNet-5 [25], AlexNet [15],

and VGG16 [26], etc.) with various sparsity levels. Compared

against the state-of-the-art NN accelerator, DianNao, on aver-

age, our accelerator achieves 7.23x speedup and 6.43x energy

reduction, at the cost of 954mW power and 6.38mm2 area

consumption. Moreover, compared against the GPU with the

sparse library (i.e., cuSPARSE), on average, our accelerator

achieves 10.60x speedup and 29.43x energy reduction. Com-

pared against the CPU with the sparse library (i.e., Sparse

BLAS [27]), on average, our accelerator achieves 144.41x

speedup.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce primer on neural networks,

including state-of-the-art NNs (e.g., CNNs and DNNs) and

sparse NNs. Then, we present the motivation of building

custom accelerator for sparse NNs.

A. Primer on Neural Networks

State-of-the-art neural networks. The state-of-the-art neu-

ral network algorithms are Convolutional Neural Networks

(CNNs) and Deep Neural Networks (DNNs). Usually, a CNN

or a DNN includes four types of layers, i.e., convolutional

layer, pooling layer, classifier layer and normalization layer.

The main difference between CNNs and DNNs is the convo-

lution layer, where synapses are shared in CNNs but private

1In this paper, we do not care which techniques are used for pruning
the neural network.
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Fig. 2. A typical CNN: LeNet-5 [25].

in DNNs. Figure 2 shows a representative CNN, LeNet-

5 [25]. LeNet-5 consists of two convolutional layers (C1 and

C3) to identify certain characteristics of input feature maps

(e.g., 6 feature maps of size 28×28 in C1) by applying

local filters, two pooling layers (S2 and S4) to downscale the

feature maps by performing maximum or average subsampling

operations on a window (e.g., 28×28), and three classifier

layers (F5, F6 and F7) to carry out classification according

to features extracted from previous layers. Note that LeNet-

5 does not include normalization layers, which have been

proposed recently2. Although in LeNet-5, the number of

synapses is about 50 kilos, this number has further increased

to 10 billions recently [17], which makes the state-of-the-art

NNs notoriously computationally and memory intensive.

Sparse neural networks. As the large number of neu-

rons and synapses hinder efficient NN processing, researchers

proposed a number of training techniques such as Sparse

Coding [29], Auto Encoder/Decoder [19], [20] and Deep

Belief Network (DBN) [21], to prune redundant synapses and

neurons without loss of accuracy. A state-of-the-art pruning

technique is proposed by Han et al. [23] in 2015. The

pruning approach consists of three main steps, i.e., training

connectivity, pruning connection (i.e., synapse), and training

weight. In the first step, the neural network is trained by

traditional back propagation algorithm with normal learning

rate. Then, connections with weights below a predefined

threshold value can be removed. Finally, the pruned network

should be retrained with a very small learning rate to obtain the

final weights. To achieve a high compression ratio, the above

process will be repeated until no synapse can be pruned. As

reported in Table 1, by using the proposed pruned technique,

the average sparsity (i.e., the fraction of remaining synapses

over the total number of synapses after pruning) is 12% across

representative NNs without loss of accuracy.
TABLE I

NUMBERS OF NEURONS AND SYNAPSES IN SPARSE NNS (C FOR

CONVOLUTIONAL LAYER; F FOR CLASSIFIER LAYER).
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LeNet-5 [25] 8.90K 430.62K 36.30K 8.43 3.33K 32.97K
AlexNet [15] 1.28M 60.95M 6.80M 11.15 864.86K 5.93M
VGG16 [26] 14.53M 138.34M 10.53M 7.61 4.81M 5.72M

2Two typical types of normalization layers are Local Contrast Nor-
malization Layer (LCN) and Local Response Normalization Layer
(LRN), which were proposed in 2009 [28] and 2012 [15] respectively.
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Fig. 3. The speedup of sparse NN vs. dense NN on CPU, GPU and DianNao.

B. Motivation

Though the number of operations (e.g., floating-point op-

erations, flops or fixed-point operations, ops) and memory

accesses can be greatly reduced with synapse pruning, existing

hardware platforms (including CPUs, GPUs, FPGAs and cus-

tom accelerators) cannot benefit a lot in terms of performance

and energy efficiency, due to the lack of dedicated hardware

support for irregular and sparse NN models.

On general-purpose platforms such as CPUs and GPUs,

the performance gains of sparse NNs are relatively marginal

compared to the amount of reduced operations. Figure 3

shows the performance benefits (in terms of the reduction of

execution time) of the sparse networks over the original dense

versions on the CPU (Sparse BLAS vs. Caffe [30]) and GPU

(cuSPARSE vs. Caffe) platform. We also present the sparsity

of evaluated networks (i.e., LeNet-5 [25], AlexNet [15] and

VGG16 [26]). For the CPU platform, except for LeNet-5, the

performance of sparse networks is even worse than that of

their dense versions, and the average slowdown is 211.45%.

For the GPU platform, compared with the average sparsity as

9.06% (i.e., 90.94% synapses have been removed) on evaluated

networks, the average performance gain is only 23.34%.

Although researchers have proposed optimized approaches to

leverage high parallelism of modern CPUs and GPUs for

sparse representations, the attainable performance is still far

from peak (e.g., only 0.49% for sparse matrix vector multiply

on the GPU [31]), because of the inherent bandwidth limitation

and non-computational overhead [31]. The bandwidth problem

also limits FPGAs to be in favor of sparse NNs.

The benefit of synapse pruning is even trivial on state-of-

the-art NN accelerators such as DianNao and DaDianNao.

Since such custom accelerators cannot directly process sparse

formats, sparse NNs have to be mapped to the accelerator the

same way as dense NNs by filling the locations of pruned

synapses with zero values. In this case, both the number of

operations and memory accesses cannot be reduced at all for

sparse NNs, yielding no reduction of execution time, as shown

in Figure 3. An intuitive optimization is to directly integrate

sparsity encoding/decoding modules into existing DianNao or

DaDianNao architecture, so as to reduce off-chip memory

accesses as well. However, this solution may not be efficient

for two main reasons: 1) the number of total operations remain

the same, because the pruned synapses are still filled with zero

values, incurring significant waste of computational resource,

2) neither the centralized architecture (e.g., DianNao) nor the

symmetric tiled architecture (e.g., DaDianNao) can adapt to
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the irregularity of sparse NNs.

Therefore, the above observation motivates building a highly

efficient architecture to take advantage of the irregularity and

sparsity of modern neural networks.

III. ACCELERATOR DESIGN

In this section, we present detailed architecture of our

accelerator.

A. Overview

Figure 4 presents the proposed architecture of our accel-

erator, which consists of a control processor (CP), a buffer

controller (BC), two neural buffers (NBin and NBout), a direct

memory access module (DMA) and a computation unit (CU)

which contains multiple processing elements (PEs), say Tn.

All the PEs are connected in a topology of Fat-tree in order

to avoid wiring congestion. The BC selects needed neurons

for each PE from local neuron buffers based on the loaded

instructions which are decoded by the CP, and transfers those

neurons to PEs for efficient local computation. The logic

connection between the BC and multiple PEs is shown in

Figure 5. A key feature of the proposed architecture is the

indexing units in the BC. There are Tn indexing units in

total, each corresponds to one PE, for selecting its necessary

neurons.

In this design, we use 16-bit fixed-point arithmetic units

rather than conventional 32-bit floating-point units. The main
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reason is that, with negligible accuracy loss, the 16-bit fixed-

point unit has significantly lower hardware cost than the 32-

bit floating-point unit, as validated by previous studies [2],

[11], [32]. More specifically, a 16-bit truncated fixed-point

multiplier is 6.10x smaller and 7.33x more energy-efficient

than a 32-bit floating-point multiplier at TSMC 65nm technol-

ogy [11]. Furthermore, the width of data buses will be reduced

by half by using 16-bit data representation.

B. Computation Unit

The Computation Unit is designed for efficient compu-

tation of the core operation of neural networks, i.e., the

vector multiplication-addition operation, with multiple PEs.

Figure 6(a) shows the architecture of the PE, consisting of

a synapse buffer (SB) and neural network functional units for

the PE (PEFU). The PEFUs take synapses from the local SB

and neurons from the BC as inputs, producing output neurons

that will be sent back to the BC.

PEFU. The PEFUs are mainly used for multiplication-

addition operations in neural networks. A single PEFU consists

of several multipliers, say Tm, as well as Tm-in adder-tree,

see Figure 6(b) for detailed architecture of the PEFU. Thus

Tn vector multiplication-addition operations (Tm•Tm) can be

performed at the same time with Tn PEs. In order to achieve

high frequency, we pipeline the functional units in the PEFU

into 2 stages: the multiplication and the addition of all the

multiplication results. With Tm inputs, all Tn PEs can produce

Tn output neurons simultaneously.

SB. The SB is used for storing distributed synapses, and

there are two key issues during the design of the SB. The first

is to determine an appropriate size of the SB, and the second

is to organize synapses in the SB.

Though previous work proposed to offer large enough

buffers for holding all synapses of neural networks with

moderate sizes [12], [13], so as to avoid costly off-chip

memory accesses, the SB in our accelerator is not designed

for holding all synapses. The reason is twofold. First, even

with sparsity, the total size of synapses is more than several

megabytes, e.g., ∼7 MB for AlexNet, ∼10M for VGG as listed

in Table I. Second, our accelerator is designed for support-

ing neural networks with different sparsity levels, including

dense networks that have much large sizes of synapses. Thus,

designing a large SB for storing all synapses would incur

considerable delay, area and energy penalty. Actually, the SB

with optimal size should be able to hide the latency of memory

accesses, in order to keep the PEFU busy without waiting for

input data. In our current implementation, we deploy 2KB SB

in each PE, leading to 2×TnKB storage in total for synapses.
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Fig. 7. (a) An example of sparse connection. (b) The data organization in
the SB.

Thus, each SB can offer Tm data to the PEFU every cycle,

i.e., a Tm × 16-bit width SRAM is provided.

To illustrate the synapse organization in the SB, we use a

sparse network example consisting of 7 input neurons and 2

output neurons, as shown in Figure 7(a). We assume that this

network is mapped to only one PE with parameter Tm = 4,

and we use wi,j to denote the synaptic weight between input

neuron #i and output neuron #j. The weights of synapses

connected to different output neurons are stored in the SB

compactly by aligning to Tm (i.e., 4). As shown in Figure 7(b),

the two weights of output neuron 0 (i.e., w00 and w40) are

stored in address 0 one by one while the five weights of

output neuron 1 (e.g., w11 and w61) are stored in subsequent

addresses: addresses 1 and 2. Hence, when computing output

neuron 0, the SB only needs to be read once, while for output

neuron 1, it needs to be read twice. As the number of synapses

of different neurons may significantly differ from each other,

we allow SBs in different PEs to load new data from the

memory asynchronously to improve overall efficiency.

C. Buffer Controller

The buffer controller is designed for transferring neces-

sary neurons to PEs, orchestrating computations on PEs, and

performing less computation-intensive operations. Figure 8

illustrates the architecture of the BC, which consists of a

module used to index data for computation based on con-

nections (Indexing Module, IM), and the specialized function

units for the BC (BCFU). At first, inputs are fetched from

NBin based on the control signals decoded from instructions

(e.g., memory access instruction). Then, either the needed

neurons are selected from the inputs and transferred to each

PE or the inputs are directed fed into the BCFU. After

completing computation in PEs, the results are collected for

further processing on BCFU or directly wrote back to NBout.

Note that, the accelerator can bypass the IM when processing

dense NNs to avoid the potential slowdown due to IM.

IM

BCFU

F
a
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Control 
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Fig. 8. The architecture of the buffer controller.

BCFU. The BCFU is mainly used for storing neurons to be

selected by IM. Note that there are Tm such units, thus it can

store Tm neurons simultaneously.



1

0

0

0

1

0

0

0

Indexing

0

1

1

1

0

1

1

0

n0

n1

n2

n3

n4

n5

n6

n7

Indexing

input neuronsconnections connections

n0

n4

n1

n2

n3

n5

n6

PE #0 PE #1

Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it

is used for indexing needed neurons of sparse neural networks

with different levels of sparsity. Instead of distributing an

indexing module to each PE, we design a centralized indexing

module in the BC and only transfer the indexed neurons to

PEs, which can significantly reduce the bandwidth requirement

between the neural buffer and PEs because the number of data

after indexing is much smaller in sparse networks. In Figure 9,

different input neurons are selected for different PEs based on

stored connections. For PE #0, only two neurons, i.e., n0 and

n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two

commonly-used indexing options, i.e., direct indexing and step

indexing. The direct indexing approach uses a binary string

with one bit per synapse, indicating whether the corresponding

synapse exists, i.e., “1” for existence and “0” for absence. The

step indexing approach further indexes the binary string of

direct indexing by using distances between existed synapses

(“1”s in the binary string), i.e., each element in the index table

indicates the distance between two existed synapses.

Although there exists other indexing methods, such as

Compressed Sparse Row (CSR), Coordinate list (COO), and

Compressed Sparse Column (CSC), direct indexing and step

indexing are relatively easy to implement from the perspective

of hardware design. For example, well used CSR/CSC need

two arrays to store indexes for sparse matrix which will

be costly for storage in the context of sparse NNs whose

sparsity are usually larger than 5% (see Table I). Besides,

CSR/CSR are indexing row and column of matrix while

our deliberated design scheduling in accelerator is indexing

multiple neurons and synapses one-dimensionally in parallel.

Thus we investigate direct indexing and step indexing for

implementing high efficient indexing module.

In direct indexing, neurons are selected from all input

neurons directly based on existed connections (i.e., 1s) in the

binary string. The binary string of a sparse network example is

shown in Figure 10(a). We also present the potential hardware

implementation in Figure 10(b). The indexing process can be

elaborated as follows. First we add each bit in the original

binary string to obtain an accumulated string, and each element

in the accumulated string indicates the location of correspond-

ing connection. After enforcing the “AND” operation between
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Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of

each connected neuron can be obtained.

n1n2n5n7

2311
1

1

3

2

++++

0 521

n0

n2

n1

n3

n4

n5

n6

n7MUX

2

3

1

1

Distance

In
p
u
t n

e
u
ro

n
s

indexing results

Input Neuron

Output

Neuron

8521

(a) (b)

Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances

between input neurons with existed synapses. We present the

same network example with step indexing in Figure 11(a)

and the potential hardware implementation in Figure 11(b).

The indexing process can be detailed as follow. First, we add

the numbers in the index table (e.g., “1132” in Figure 11(b))

sequentially to get the indexes of inputs neurons which have

connections with the current output neuron. Then, such indexes

are used for addressing the corresponding input neurons.

Compared against the direct indexing, the indexes in step

indexing are integer numbers whose widths depend on the

sparsity of NNs.

We implement the above two indexing approaches in RTL

and compare corresponding hardware costs in terms of area

and power with synthesized results in Figure 12. Note that

indexes are computed in parallel for both implementations. By

selecting 16 data from an array with a length varying from 32

to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,

we observe that the costs are increasing with the sparsity.
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Moreover, the costs of the step indexing are always smaller

than that of the direct indexing on all evaluated datasets. For

example, when the size of data array is 256 (this size is also

used in our current implementation), the area and power of

step indexing are about 10% and 40%, respectively, less than

that of the direct indexing.

Based on the above investigation, we select and apply the

step indexing to implementing IM. In the current design, IM

is able to read Tm × Tm data every cycle for selecting input

neurons of each PE.

D. CP

The CP is designed for efficiently and flexibly controlling

the execution with various instructions. The instructions are

used for data organization, execution coordination, and mem-

ory accesses, etc., and they are stored in a small instruction

buffer. To ease the programming burden of end users, we

provide a compiler in C++ to generate highly efficient instruc-

tions, which will be elaborated later.

E. NB

The NB includes NBin and NBout, for storing input and

output neurons respectively: the input neurons are selected

from NBin then sent to all the PEs for computation, and the

output neurons are collected to NBout after computation. The

neurons stored in the NBs are arranged orderly disregarding

various connection patterns of the sparse networks. In the

current implementation, we set the width of the data bus

between the IM and NBin as Tm × Tm × 16 bits. Thus, at

most Tm data can be selected out for each PE per cycle.

The sizes of NBin and NBout are decisive to the overall

performance and energy consumption. After studying different

sizes of NBs, we found that 8KB is the optimal tradeoff

between the achieved performance and related energy con-

sumption. Therefore, in our accelerator implementation, we

use 8KB for both NBin and NBout. Note that, the size of

NBin is larger that that of SB (for storing synapses, 2KB)

since the accelerator needs to store more input neurons before

selecting necessary neurons for PEs.

Apparently, 8KB NBs cannot hold all neurons of large-

scale neural networks, and thus a proper data replacement

strategy should be employed to reduce costly off-chip memory

accesses. Only when all the neurons in NBin have been

processed or NBout is full, the main memory will be accessed

for loading new input neurons or storing computed output

neurons, respectively.

F. Interconnect and communication

Interconnect. We employ the Fat-tree [33] interconnect

topology, which features that more data links are provided

near the top of the interconnect hierachy, to connect the BC

and all the PEs, in order to improve the efficiency of data

movement between them. There are two reasons to use the Fat-

tree interconnect: 1) compared to other non-tree interconnect

topologies, using Fat-tree can avoid the long critical path

caused by unbalanced delays between the BC and PEs, and

2) compared to other tree-like interconnect topologies, Fat-tree

can provide private connection to alleviate network congestion,

as data sent to different PEs are independent.

Communication. The data communication between off-

chip memory and on-chip buffers (including NBin, NBout,

and SB) are implemented through Direct Memory Access

(DMA). To balance the execution of different PEs and avoid

the congestion of memory access, we first split the required

synapses into chunks. Then, the memory access port will be

assigned to only one PE at a time for a short period, thus each

PE will be able to load only several chunks during that period.

In this case, each PE would have some synapses, if not all,

to perform the corresponding computation at different cycles.

Such asynchronous computation pattern can reduce memory

congestion by allowing different PEs to compute at different

cycles.

IV. MAPPING

The representative types of layers include the convolutional,

pooling, classifier, and normalization layer. A convolutional

layer constructs the output feature maps through convolving

multiple input feature maps with shared or private kernels, and

occupies about 85% computational time of the entire network

processing. The data of feature maps are stored in the on-chip

buffer in the order of map id. During the computing process

of a convolutional layer, all output neurons will complete the

computation related to the data in NBin of the BC before

replacing with new input neurons, in order to maximize the

reuse of input neurons in NBin to reduce off-chip memory

accesses.

The pooling layer downsamples input feature maps to

construct output feature maps, by performing either maximum

or average operation on a 2D pooling window. For pooling

layer, the data could be efficiently mapped to the BC, and is

processed similarly to that in a convolutional layer.

The classifier layer performs classification according to the

features extracted from previous layers. In contrast to the

convolutional layer, there is no sharing of synaptic weights be-

tween input-output neuron pairs in the classifier layer. Hence,

the mapping of synaptic weights onto the on-chip buffer aims

at maximizing the reuse of input and output neurons.

The normalization layer performs normalization over local

input regions, and it can be decomposed into a number of

sub-layers and fundamental computational primitives such as



element-wise square, matrix addition, and divisions, etc. [13].

Thus, we can leverage previous methods to process the nor-

malization layer.

The computing processes for the convolutional layer, the

pooling layer, the classifier layer and the normalization layer

are similar to that in DaDianNao [12].

V. PROGRAMMING MODEL

A. Library-based Programming

To ease the programming burden, we propose a library-

based programming model for our accelerator. The basic

idea is to provide a set of high-level (e.g., C/C++ level)

library functions, each corresponding to a basic neural network

operation, so that users can invoke our accelerator directly with

high-level languages. Listing 1 shows the function declaration

of the convolution operation in our library. In addition to

neural network operations, we also provide relatively low-level

primitives, such as matrix/vector multiply/add. Thus, users

can leverage such primitives, together with typical language

constructs (e.g., loop and condition) to implement more com-

plicated operations. Eventually, the original C/C++ code will

be compiled and optimized by our in-house compiler, so as to

generate highly efficient binary instructions.

C o n v o l u t i o n F o r w a r d (
T e n s o r D e s c r i p t o r t i npu tDesc , / / i n p u t d e s c r i p t o r

void∗ i n p u t , / / i n p u t da ta

T e n s o r D e s c r i p t o r t f i l t e r D e s c , / / f i l t e r d e s c r i p t o r

void∗ f i l t e r , / / f i l t e r

T e n s o r D e s c r i p t p r t ou tpu tDesc , / / o u t p u t d e s c r i p t o r

void∗ o u t p u t ) ; / / o u t p u t da ta

Listing 1. Function declaration of the convolution operation.

B. Programing Framework

To gain performance portability, we also integrate the imple-

mented programming library into widely-used deep learning

frameworks such as Caffe [30]. Therefore, end users can

directly leverage the interface of Caffe (i.e., network configu-

ration file) without any modification of their codes. Figure 13

shows the programming process of our accelerator. Initially,

we use the sparse neural network model obtained from the

training phase, and the corresponding sparse representation to

create a compact neural network model file. Then, the compact

model file, the neural network configuration, and the input

data, are sent to Caffe. In Caffe, our library functions are

invoked to generate outputs. For the dense neural network,

the model file only contains the dense neural network model

gained from the training phase. In this case, the underlying

network format is entirely transparent to the user.

VI. EXPERIMENTAL METHODOLOGY

In this section, we introduce the experimental methodology.

Bechmarks. We use 6 representative neural networks, i.e.,

LeNet-5, AlexNet, VGG, Dropout NN1 (2-layer MLP, 800 hid-

den neurons), Dropout NN2 (3-layer MLP, 8192×8192 hidden

neurons), and Cifar10 quick model [34] as our benchmarks.

Table II lists the characteristics of those networks, including

the number of synapses, and the corresponding sparsity of

Sparse 
Models

Sparse 
Indi es

NN
Config

NN Models

Caffe Li rary

Inputs

Outputs

Fig. 13. Programming process of our accelerator.

different kinds of layers, so as to demonstrate the flexibility

of our accelerator.

Measurements. We implement our accelerator with RTL

description in Verilog, synthesize it with Synopsys Design

Compiler, then place and route it with Synopsys IC Compiler

using the TSMC 65nm Gplus High VT library. We use

CACTI 6.0 to estimate the energy consumption of DRAM

accesses [35].

Baselines. We compare our design with three baselines, i.e.,

the CPU, the GPU and DianNao.

CPU: We use Caffe [30], the most popular deep learning

framework, to evaluate our benchmarks on a modern

CPU, Intel Xeon CPU E5-2620 v2 (denoted as CPU-

Caffe). Also, in order to adapt to sparse neural networks,

we implement the evaluated benchmarks with the most

widely used sparse library, i.e., sparseBLAS [27] (CPU-

Sparse), on the CPU.

GPU: We use Caffe to evaluate our benchmarks on

a modern GPU card, Nvidia K20M, which has a 5

GB GDDR5, 3.52 TFlops peak at 28nm technology

(GPU-Caffe). Furthermore, we natively use cuBLAS to

implement our benchmarks for fair comparison (GPU-

cuBLAS). For the sparse version, we implement the

CSR indexing on the GPU with state-of-the-art cuSparse

library [24] (GPU-cuSparse).

Accelerator: We also compare our accelerator against the

state-of-the-art neural network accelerator, DianNao [11].

With the help from the authors of DianNao, we reimple-

ment DianNao with the same technology process as well

as other details in their paper, in order to have a fair

comparison. More specifically, we implement DianNao

with 16 × 16 multipliers, 16 16-in adder trees and 16

TABLE II
BENCHMARKS WITH REMAINING SYNAPSES IN EACH LAYER (C FOR

CONVOLUTIONAL LAYERS; F FOR CLASSIFIER LAYERS; TOTAL FOR ALL

LAYERS).

— LeNet-5 [25] AlexNet [15] VGG16 [26]

—Synapses Sparsity Synapses Sparsity Synapses Sparsity
Total—36.30K 8.43% 6.80M 11.15% 10.53M 7.61%
C —3.33K 13.06% 864.86K 37.08% 4.81M 32.69%
F —32.97K 8.14% 5.93M 10.12% 5.72M 4.63%

— Dropout NN1 [18] Dropout NN2 [18] Cifar10 [34]

—Synapses Sparsity Synapses Sparsity Synapses Sparsity
Total—44.38K 6.99% 5.89M 8.00% 6.15K 5.02%
C —- - - - 4.62K 5.84%
F —44.38K 6.99% 5.89M 8.00% 1.53K 4.07%



non-linear modules.

VII. EXPERIMENTAL RESULTS

A. Hardware characteristics

In the current implementation, we select Tm = Tn = 16

as discussed in Section III-B, thus the accelerator consists

of 16 PEs, each of which has 16 multipliers and one 16-in

adder tree. We report the characteristics of our accelerator as

well as our reimplemented DianNao in Table III. Note that

the ALU in Table III refers to the modules used in the last

stage in DianNao for non-linear functions, achieving the same

functionality as CTFU. With such design, our accelerator is

able to achieve the peak performance as DianNao, i.e., 528

fixed-point operations every cycle.

We present in Table IV the layout characteristics (including

area and power consumption) of our accelerator. The accel-

erator, which has 56 KB on-chip SRAM and 528 operators

in total, is 2.11x larger than DianNao with 6.38mm2 vs.

3.02mm2. The total power of our accelerator is only 954mW ,

which is 469mW higher than DianNao with 485mW . Addi-

tionally, we achieve a frequency of 1 GHz which is a little bit

higher than 0.98 GHz in DianNao.

TABLE III
HARDWARE PARAMETERS OF ACCELERATORS.

Cambricon-X DianNao

# BC 1 -
# PE 16 -
# multiplier 256 256
# 16-in adder tree 16 16
# ALU 16 16

TABLE IV
HARDWARE CHARACTERISTICS OF ACCELERATORS.

accelerator Area (mm2) % Power (mW ) %

Total 6.38 100 954 100

BC
NBin 0.55 8.66 93.32 9.78
NBout 0.55 8.66 93.32 9.78
CTFU 0.11 1.72 31.63 13.31
IM 1.98 31.07 332.62 34.83
CP 0.16 2.54 75.06 7.86

PEs
LTFU 1.78 27.94 153.01 16.02
SB 1.05 16.51 151.91 15.91

B. Performance

We compare our accelerator against CPU, GPU, and Dian-

Nao on all evaluated networks listed in Table II with different

implementations. On the CPU and the GPU, in addition to

implementations with dense libraries for dense representation

(i.e., CPU-Caffe, GPU-Caffe, and GPU-cuBLAS), we also

implement evaluated networks with sparse libraries for sparse

representation (i.e., CPU-Sparse and GPU-cuSparse). For fair

comparison, we evaluate the performance of our accelerator

for dense representation (i.e., Cambricon-X-dense) as well.

In Figure 14, we normalize all the performance numbers

of the above implementations to that of our accelerator for

S
p

e
e
d

u
p

 (
lo

g
1
0
)

0
1

2
3

4

CPU−Caffe
GPU−Caffe

GPU−cuBLAS
DianNao

Cambricon−X−dense

CPU−Sparse GPU−cuSparse DianNao

Dense NN:

Sparse NN:

LeNet−5 AlexNet VGG16 D. NN1 D. NN2 Cifar10 GeoMean

dense sparse

Fig. 14. The speedup of our accelerator over CPU, GPU and DianNao for
all evaluated NNs, including both the dense and sparse implementations. All
the performance numbers of different implementations are normalized to that
of our accelerator with sparse networks.

sparse representation. Regarding implementations for dense

representation, on average, our accelerator is 51.55x, 5.20x

and 4.94x faster than CPU-Caffe, GPU-Caffe and GPU-

cuBLAS, respectively, on the evaluated benchmarks (Our

accelerator for sparse representation achieves 151.82x, 15.32x

and 13.18x respectively). Regarding the sparse representation,

on average, our accelerator is 144.41x and 10.60x faster than

CPU-Sparse and GPU-Sparse, respectively. Compared against

DianNao, our accelerator still achieves 7.23x speedup, which

well demonstrates the efficiency of our accelerator. Note that

our accelerator can efficiently process not only the sparse

networks, but also the dense networks, as demonstrated by the

observation that Cambricon-X-dense achieves 2.46x speedup

over DianNao.

To gain more insights of the above performance benefit, we

further show the performance comparison of the convolutional

layers and classifier layers, in Figure 15 and Figure 16, respec-

tively, where all the performance numbers are normalized to

that of our accelerator with sparse representation. In Figure 15,

for the convolutional layer, on average, our accelerator is

8.90x, 7.67x and 8.89x faster than GPU-cuBLAS, GPU-

cuSparse, and DianNao, respectively. In Figure 16, for the clas-

sifier layer, on average, our accelerator is 44.28x, 20.07x, and

5.99x faster than GPU-cuBLAS, GPU-cuSparse, and DianNao,

respectively. Generally, the speedup on the classifier layers is

much larger than that on the convolutional layers, because the

classifier layers can achieve higher sparsity than the convolu-

tional layer (5.23% vs. 22.65%) on the evaluated benchmarks.

This is also validated by the observation that our accelerator

achieves 2.51x and 4.84x speedup over Cambricon-X-dense

for the convolutional and classifier layers, respectively.

C. Energy

In Figure 17, we report the energy comparison of the

GPU, DianNao, and our accelerator across all the benchmarks,

where the energy of off-chip memory access is also included.

Compared to the GPU platform, on average, our accelerator

achieves 37.79x and 29.43x better energy efficiency for the

dense and sparse networks, respectively. Compared to Dian-

Nao, on average, our accelerator achieves 6.43x better energy

efficiency for both the dense and sparse networks. We made an

interesting observation that the best energy efficiency achieved
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Fig. 16. The speedup of our accelerator over CPU, GPU and DianNao for
classifier layers.

by our accelerator over both the GPU and DianNao is from

AlexNet. The main reason is that kernel sizes in convolutional

layers of AlexNet are larger than that of other networks,

which elevate the memory efficiency drastically. Moreover, our

accelerator for dense representation reduces energy by 1.70x

over DianNao, which demonstrates that our accelerator is also

energy efficient for processing dense networks.

We further show the energy breakdown of our accelerator

for all layers, the convolutional layers, and the classifier layers

in Figure 18, where the results for both the dense and sparse

networks are also presented. We can see that the main memory

accesses consume more than 80% of the total energy across all

layers, which is consistent with the results reported by Chen et

al. [11]. It is clear that the ratio of memory access energy of the

classifier layers is much higher than that of the convolutional

layers (i.e., 98.39% vs. 90.63% on average) due to the high

sparsity in the classifier layers. Also, by comparing breakdown

results of the sparse and dense networks, we can observe that,

for most networks, the ratios of memory access energy of

sparse networks are generally higher than that of the dense

networks (e.g., 90.63% vs. 87.28% on the convolutional layers

averagely). In other words, the energy problem of off-chip

memory access is more severe for the sparse networks due to

their relatively low computational intensity compared with the

dense networks.

VIII. DISCUSSION

A. Sensitivity to network sparsity

We investigate the sensitivity of hardware platforms to

different levels of network sparsity. Figure 19 shows the

speedup of sparse network layers (i.e., the convolutional layer
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and the classifier layer) with varying sparsity (ranging from

1% to 95%) over the dense ones on CPU, GPU and our

accelerator3. We made several interesting observations: 1)

When the sparsity is relatively high (e.g., more than 70%),

both the CPU and GPU platforms cannot benefit from sparse

networks due to non-trivial cost of sparse data processing.

For example, the performance of the classifier layer with 85%

sparsity is even 85% and 31% worse than that of the dense

layer on the CPU and GPU, respectively, 2) on the GPU

platform, the classifier layer and the convolutional layer have

significantly different behaviors. More specifically, for the

classifier layer, when the sparsity is less than 55%, the sparse

network can outperform the dense version, and the speedup

can be continuously improved with decreasing sparsity. While

for the convolutional layer, the sparse network can only

outperform the dense version when the sparsity is less than 3%.

The underlying reason is that the speedup of sparse matrix-

vector multiplication (SpMV) employed by the classifier layer

is much more sensitivity to the decreasing sparsity than that of

sparse matrix-matrix multiplication (SpMM) employed by the

convolutional layer, 3) on the CPU platform, one observation

is completely different from that of the GPU platform, that

is, the speedup of the convolutional layer is generally better

than that of the classifier layer. Nevertheless, the speedup of

the classifier layer is improved much more drastically than

that of the convolutional layer. This observation complies with

that of the GPU platform, that is, the relatively bandwidth-

limit SpMV is much more sensitive to the decreasing network

sparsity, and 4) on our accelerator, the sparse networks can

easily outperform the dense versions even when the sparsity is

only 95%, and the performance gain can be improved greatly

with the decreasing sparsity. For example, given the sparsity

as 1%, our accelerator can achieve 48.53× speedup while the

GPU and CPU can only achieve 19.42× and 11.72× speedup,

respectively, on the classifier layer. In addition, for both the

convolutional layer and classifier layer, the sparse networks

have consistent speedup over the dense versions.

The above observations further validate that our accelerator

can well exploit the sparsity of modern neural network models.

3We do not present the results of DianNao, since the speedup is always
1 for networks with different sparsity.
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Also, it is clear that our accelerator are more adaptive to future

neural networks with far lower sparsity, i.e., < 1%, compared

against to existing hardware platforms.

B. Pruning neurons

Although a neuron can be pruned when all its input synapses

have been removed, in our current implementation, the convo-

lutional layer cannot greatly benefit from such neuron pruning.

We discuss the underlying reason as follows. For simplicity,

we only assume that there is only one pruned neuron in the

convolutional layer. As the pruned neuron will not consume

computational resource in the mapped PE, a new neuron

should be assigned to the PE to avoid pipeline stall. In this

case, the PE will process a new neuron on another output

feature map with the same location (as the pruned neuron),

in order to maximize the reuse of input neurons. Thus, the

addresses of all output neurons that are assembled by PEs

at different cycles will not be aligned to Tn. In fact, the

arrangement of such unaligned data in NBout would incur

considerable hardware cost for the convolutional layer, because

the neurons of the same output feature maps are stored orderly.

On contrary, the outputs of the classifier layer simply constitute

a vector, i.e., a feature map with size of 1×1, and thus it does

not require to align different neurons on the same feature map.

In other words, only the classifier layer can benefit from the

neuron pruning.

C. DaDianNao

We also investigate the DaDianNao architecture, a large-

scale neural network accelerator containing 16 tiles (each has

the same computational ability as all PEs in our accelerator),

a 36MB on-chip eDRAM, and the eDRAM router between

them [12]. The eDRAM and tiles are connected with a shared

data bus, and thus all tiles receive the same inputs broadcasted

from the eDRAM. There are two intuitive options to extend

the above DaDianNao architecture for efficiently supporting

sparse neural networks. The first option is to integrate an

indexing unit into each tile, so as to select needed neurons

from received data within the tile. However, this solution

advances high bandwidth requirement between the eDRAM

and all tiles, as the size of received data is several time

higher than that of our accelerator. For example, given a neural

network with the sparsity of 90%, in DaDianNao, each tile

consumes 10 cycles with the original 256-bit data bus to fetch

the original 160 16-bit data. Since only 16 data are useful

for computation, in our accelerator, each PE only consumes

1 cycle on average to fetch data. In other words, for sparse

neural networks, the bandwidth requirement of DaDianNao

is 10x higher than our accelerator. The second option is to

offer a central indexing unit to select needed data and then

send selected data for each tile sequentially. This solution is

also inefficient due to the contention of the shared data bus. In

summary, the DaDianNao architecture cannot be extended in a

straightforward fashion to exploit the sparsity and irregularity

of modern neural networks to achieve high efficiency as the

accelerator proposed in this paper.

IX. RELATED WORK

In this section, we mainly introduce related work on accel-

erators for efficient processing of neural networks.

GPUs with mature libraries (e.g., cuBLAS) and frameworks

(e.g., Caffe [30] and Tensorflow [36]) are the most widely used

platform for neural networks in both academic research and

industrial practice. To adapt to the sparsity of modern neural

networks, sparse libraries such as cuSparse are also used for

accelerating neural network processing on GPUs.

FPGAs are also deployed for processing neural networks,

such MLP [37]–[39] or CNN/DNN [40]–[42]. However, the

relatively low operation frequency limits broad applications

of FPGAs for accelerating neural networks.

There exists many ASIC-implemented accelerators for neu-

ral networks. Chen et al. proposed DianNao [11], [43] to

accelerate various neural networks in a flexible fashion. DaDi-

anNao is proposed for efficiently processing large-scale neural

networks with sufficient on-chip memory as eDRAM [12].

Based on the observation that the DRAM access is the main



bottleneck of neural network processing, Du et al. [13] pro-

posed ShiDianNao to completely eliminate off-chip memory

accesses in embedded systems. Although the above accelera-

tors can achieve high energy efficiency for servers or embed-

ded systems, they cannot exploit the sparsity and irregularity

of modern neural networks. As convolutional neural networks

recently gain more attentions, Farabet et al. proposed a systolic

architecture called NeuFlow architecture [44] and Chakradhar

et al. designed a systolic-like coprocessor [45] to handle 2D

convolution efficiently in a CNN where the convolutional layer

occupies about 85% computational time of the entire network

processing. Gokhale et al. [46] designed a mobile coprocessor

for visual processing at mobile devices, which supports both

CNNs and DNNs. Han et al proposed EIE [47] for leveraging

the sparsity of full-connected layers in neural networks with

CSC sparse representation scheme, which is a two-dimensional

indexing method thus not as efficient as our accelerator.

Substantially different from above designs, our accelerator

aims at high efficiency for both dense and sparse neural

networks.

X. CONCLUSIONS

In this paper, we propose a novel accelerator (Cambricon-

X) which can effectively cope with not only the traditional

dense neural networks but also the pruned sparse neural

networks. The accelerator features a PE-based architecture

consisting of the BC and multiple PEs. The BC integrates

an indexing module for selecting necessary neurons for PEs.

Each PE stores irregular and compressed synapses for local

computation, and all of them work in an asynchronous manner.

With a footprint of 6.38mm2 and 954mW , our accelerator

is able to perform 16 output neurons with sparse connections

simultaneously, yielding 544 GOP/s at most. Compared with

a state-of-the-art neural network accelerator, DianNao, our

accelerator achieves 7.23x and 6.43x better performance and

energy efficiency respectively.
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