
Wang et al.

CSLT TECHNICAL REPORT-20160023 [Saturday 7th January, 2017]

AP16-OL7: A Multilingual Database for Oriental
Languages and A Language Recognition Baseline
Dong Wang1,3*

, Lantian Li1,2

, Difei Tang4

and Qing Chen4

*Correspondence: wang-

dong99@mails.tsinghua.edu.cn
1Center for Speech and Language

Technology, Research Institute of

Information Technology, Tsinghua

University, ROOM 1-303, BLDG

FIT, 100084 Beijing, China

Full list of author information is

available at the end of the article

Abstract

We present the AP16-OL7 database which was released as the training and test
data for the oriental language recognition (OLR) challenge on APSIPA 2016.
Based on the database, a baseline system was constructed on the basis of the
i-vector model. We report the baseline results evaluated in various metrics
defined by the AP16-OLR evaluation plan and demonstrate that AP16-OL7 is a
reasonable data resource for multilingual research.
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1 Introduction
Oriental languages, including various languages spoken in east, northeast and

southeast Asia, belong to several language families, including Austroasiatic lan-

guages (e.g.,Vietnamese, Cambodia ) [1], Tai–Kadai languages (e.g., Thai, Lao), H-

mong–Mien languages (e.g., some dialects in south China), Sino-Tibetan languages

(e.g., Chinese Mandarin), Altaic languages (e.g., Korea, Japanese), Indo-European

languages (e.g., Russian) [2, 3, 4]. These languages were generally believed to be

genetically unrelated and were developed from diverse cultures. However, they do

share many features due to the demographic migration and international business in-

teraction in history. For example, many languages in the so-called Mainland South-

east Asia (MSEA) linguistic area posses a particular syllable structure that involves

monosyllabic morphemes, lexical tone, a fairly large inventory of consonants [5].

Another example is the significant influence of Chinese to Korean, Japanese, Viet-

namese and many languages in southeast Asia. In the modern period, English be-

comes the most influential language, resulting in numerous English-originated words

in almost all oriental languages.

The complex acoustic and linguistic patterns of oriental languages have attracted

much interest in a multitude of research areas, including comparative phonetic-

s, evolutionary linguistics, second language acquisition, and social linguistics. In

particular, the diverse evolution paths of these languages and their complicated

interaction offers a valuable opportunity for studying mixlingual and multilingual

phenomena.

Despite the broad interest, data resources of oriental languages are far from abun-

dant. One possible reason is that many of these languages are spoken by a relatively
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small population, and most of the speakers are in developing countries. Some effort

has been devoted to building data resources for oriental languages, e.g., the an-

nual oriental COCOSDA (OC) workshop intends to promote speech and language

resource construction for oriental languages, and the transactions on Asian and

Low-Resource Language Information Processing (TALLIP) journal calls for orig-

inal research on oriental languages, especially languages with limited resources.[1]

Some projects, e.g., the Babel program[2], although not particularly for oriental lan-

guages, do involve Vietnamese, Thais, Lao and some other low-resource languages in

southeast Asia. In spite of these efforts, resource construction and corresponding re-

search on oriental languages are still rather limited, except one or two rich-resource

languages, such as Chinese and Japanese.

To promote research for oriental languages, particularly on multilingual speech

and language processing, the center for speech and language technologies (CSLT)

at Tsinghua University and Speechocean collaborated together and organized an

oriental language recognition (OLR) challenge on APSIPA 2016. This event called

for a competition on a language recognition task on seven oriental languages. To

support this event, Speechocean released a multilingual speech database AP16-OL7

and made it free for the challenge participants. This paper will present the data

profile of the database, the evaluation rules of the challenge, and a baseline system

that the participants can refer to.

Note that there are several databases that can be used for multilingual re-

search. For example, polyphone [6], globalPhone [7], NTT multilingual database[3],

SPEECHDAT-CAR [8],Speechdat-E [9], Babel [10], and the multilingual databases

created by the new Babel project. To our best knowledge, AP16-OL7 is the first

multilingual speech database specifically designed for oriental languages.

2 Database profile

Figure 1 The basic information of the AP16-OL7 database.

The AP16-OL7 database was originally created by Speechocean targeting for var-

ious speech processing tasks (mainly speech recognition). The entire database in-

volves seven datasets, each in a particular language. The seven languages are: Man-

darin, Cantonese, Indoesian, Japanese, Russian, Korean, Vietnamese. The data vol-

ume for each language is about 10 hours of speech signals recorded by 24 speakers

(12 males and 12 females), and each speaker recorded about 300 utterances in read-

ing style. The signals were recorded by mobile phones, with a sampling rate of 16kHz

[1]https://mc.manuscriptcentral.com/tallip
[2]https://www.iarpa.gov/index.php/research-programs/babel
[3]http://www.ntt-at.com/product/speech2002/
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and a sample size of 16 bits. Each dataset was split into a training set consisting

of 18 speakers, and a test set consisting of 6 speakers. For Mandarin, Cantonese,

Vietnamese and Indonesia, the recording was conducted in a quiet environment. As

for Russian, Korean and Japanese, there are 2 recording sessions for each speaker:

the first session was recorded in a quiet environment and the second was recorded in

a noisy environment. The basic information of the AP16-OL7 database is presented

in Fig. 2.

Besides the speech signals, the AP16-OL7 database also provides lexicons of all

the seven languages, and transcriptions of all the training utterances. These re-

sources allow training acoustic-based or phonetic-based language recognition sys-

tems. Training phone-based speech recognition systems is also possible, though large

vocabulary recognition systems are not well supported, due to the lack of large-scale

language models.

The AP16-OL7 database is freely available for the participants of the AP16-OLR

challenge and the APSIPA 2016 special session on multilingual speech and language

processing. It is also available for any academic and industrial users, subject to a

slightly different licence from SpeechOcean.[4]

3 AP16-OLR challenge
Based on the AP16-OL7 database, we call an oriental language recognition (OLR)

challenge.[5] Following the definition of NIST LRE15 [11], the task of the challenge

is defined as follows: Given a segment of speech and a language hypothesis (i.e., a

target language of interest to be detected), the task is to decide whether that target

language was in fact spoken in the given segment (yes or no), based on an automated

an analysis of the data contained in the segment. The AP16-OLR evaluation plan

also follows the principles of NIST LRE15: it focuses on the close-set condition, and

allows no additional training materials besides AP16-OL7. The evaluation details

are described as follows.

3.1 System input/output

The input to the OLR system is a set of speech segments in unknown languages (but

within the 7 languages of AP16-OL7). The task of the OLR system is to determine

the confidence that a language is contained in a speech segment. More specifically,

for each speech segment, the OLR system outputs a score vector < `1, `2, ..., `7 >,

where `i represents the confidence that language i is spoken in the speech segment.

Each score `i will be interpreted as follows: if `i ≥ 0, then the decision would be

that language i is contained in the segment, otherwise it is not. The scores should

be comparable across languages and segments. This is consistent with the principle

of LRE15, but differs from that of LRE09 [12] where an explicit decision is required

for each trial.

In summary, the output of an OLR submission will be a text file, where each line

contains a speech segment plus a score vector for this segment, e.g.,

seg1 0.5 -0.2 -0.3 0.1 -9.2 -0.1 -5.1

seg2 -0.1 -0.3 0.5 0.3 -0.5 -0.9 -3.2

... ...

[4]http://speechocean.com
[5]http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/ASR-events-AP16-details
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3.2 Test condition

• No additional training materials are allowed to use.

• All the trials should be processed. Scores of lost trials will be interpreted as

-inf.

• Each test segment should be processed independently. Knowledge from other

test segments is not allowed to use (e.g., score distribution of all the test

segments).

• Information of speakers is not allowed to use.

• Listening to any speech segments is not allowed.

3.3 Evaluation metrics

As in LRE15, the AP16-OLR challenge chooses Cavg as the principle evaluation

metric. First define the pair-wise loss that composes the missing and false alarm

probabilities for a particular target/non-target language pair:

C(Lt, Ln) = PTargetPMiss(Lt) + (1 − PTarget)PFA(Lt, Ln)

where Lt and Ln are the target and non-target languages, respectively; PMiss and

PFA are the missing and false alarm probabilities, respectively. Ptarget is the prior

probability for the target language, which is set to 0.5 in the evaluation. Then the

principle metric Cavg is defined as the average of the above pair-wise performance:

Cavg =
1

N

∑
Lt


PTarget · PMiss(Lt)

+
∑
Ln

PNon−Target · PFA(Lt, Ln)


where N is the number of languages, and PNon−Target = (1 − PTarget)/(N − 1).

4 Baseline results
We present baseline language recognition systems based on the i-vector model, and

evaluate the performance in terms of the metrics defined by the AP16-OLR chal-

lenge. The purpose of these experiments is not to present a competitive submission,

instead to demonstrate that the AP16-OL7 database is a reasonable data resource

to conduct language recognition research.

4.1 Experimental setup

The baseline system was constructed based on the i-vector model [13, 14]. The

static acoustic features involved 19-dimensional Mel frequency cepstral coefficients

(MFCCs) and the log energy. This static features were augmented by their first and

second order derivatives, resulting in 60-dimensional feature vectors. The UBM in-

volved 2, 048 Gaussian components and the dimensionality of the i-vectors was 400.

Linear discriminative analysis (LDA) was employed to promote language-related

information. The dimensionality of the LDA projection space was set to 6.

With the i-vectors (either original or after LDA transform), the score of a trail

on a particular language can be simply computed as the cosine distance between
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the test i-vector and the mean i-vector of the training segments that belong to that

language. This is denoted to be ‘cosine distance scoring’. A more powerful scoring

approach is to employ various discriminative models. In our experiment, we trained

a support vector machine (SVM) for each language to determine the score that a

test i-vector belongs to that language. The SVMs were trained on the i-vectors of all

the training segments, following the one-verse-rest scheme. We will call this scoring

approach as ‘SVM-based scoring’.

4.2 Visualization with T-SNE [15]

To provide an intuitive understanding of the discriminative capability of i-vectors

on languages, the i-vectors of all the segments in the test set are plotted in a two-

dimensional space via T-SNE [15]. Fig. 2 shows the original i-vectors, and Fig. 3

shows the i-vectors after LDA transform, where each color/shap represents a par-

ticular language. It can be seen that for the original i-vectors, each language is split

into several clusters basically due to different speakers. After LDA transformation,

speaker information is suppressed and the language identify is more significant.
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Figure 2 Original i-vectors plotted by t-SNE. Each color/shape represents a particular language.

4.3 Performance results

The primary evaluation metric in AP16-OLR is Cavg. Besides that, we also present

the performance in terms of equal error rate (EER), minimum detection cost func-

tion (minDCF), detection error tradeoff (DET) curve, and identification rate (IDR).

These metrics evaluate the system from different perspectives, offering a whole pic-

ture of the verification/identification capability of the baseline system.

4.3.1 Cavg results

The Cavg results are shown in Table 1. The rows ‘i-vector’ and ‘L-vector’ present

the results with the cosine distance scoring; ‘i-vector-SVM’ and ‘L-vecotr-SVM’
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Figure 3 LDA-transformed i-vectors plotted by t-SNE. Each color/shape represents a particular
language.

present the results with the SVM-based scoring. ‘Linear’, ‘Poly’(degree=3), and

‘RBF’ represent the three commonly used kernel functions. It can be seen that

LDA leads to consistent performance gains, and the SVM-based scoring tends to

outperform cosine distance scoring.

4.3.2 EER and minDCF results

EER and minDCF are also widely used in measuring performance of verification

systems. Compared to Cavg, these two metrics are not related to the decision re-

sult, but the quality of the scoring, and therefore evaluate the verification system

from a different angle. The results for these two metrics are presented in Table 1.

respectively. It can be seen that similar conclusions can be drawn from these results

as from the Cavg results.

4.4 DET curve

The DET curve is another popular way to evaluate verification systems. Compared

to Cavg, EER and minDCF, the DET curve presents performance on all operation

points, and therefore can evaluate a verification system in a more systematic way.

Experimental results are shown in Fig 4. The black circles represent the operation

location where the minDCFs are obtained. Again, similar conclusions as with the

Cavg, EER and minDCF can be obtained.

4.4.1 IDR results

Note that in the OLR challenge, the target languages are known in prior, and the

confidence scores are comparable across languages. This means that OLR can be
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Table 1 Cavg , EER, minDCF and IDR results of various baseline systems

System Cavg*100 EER% minDCF IDR%

i-vector 5.63 6.65 0.0659 89.16

L-vector 4.15 4.76 0.0472 90.19

i-vector-SVM 5.68 5.62 0.0558 87.07

(Linear)

i-vector-SVM 3.06 3.06 0.0303 92.73

(Poly)

i-vector-SVM 3.86 3.83 0.0381 90.80

(RBF)

L-vector-SVM 3.52 3.49 0.0344 91.82

(Linear)

L-vector-SVM 3.37 3.37 0.0334 91.99

(Poly)

L-vector-SVM 3.40 3.36 0.0333 92.04

(RBF)

treated as a language identification task, for which the language obtaining the high-

est score in a trail is regarded as the identification result. For such an identification

task, IDR is a widely used metric [16], which treats errors on all languages equally

serious. IDR is formally defined as follows:

IDR =
Tc

Tc + Ti

where Tc and Ti are the numbers of correctly and incorrectly identified utterances,

respectively. Table 1 presents the IDR results of the baseline system. We can observe

similar trends as with the verification metrics: Cavg, EER, minDCF and DET curve.

5 Conclusions
We presented the data profile of the AP16-OL7 database that was released to

support the AP16-OLR challenge on APSIPA 2016. The evaluation rules of the

challenge was described, and a baseline system was presented. We show that the

AP16-OL7 database is a suitable data resource for language recognition research.

Acknowledgment
This work was supported by the National Natural Science Foundation of China

under Grant No. 61371136 and No. 61271389. It was also supported by the National

Basic Research Program (973 Program) of China under Grant No. 2013CB329302,

and the MESTDC PhD Foundation Project No. 20130002120011.

Author details
1Center for Speech and Language Technology, Research Institute of Information Technology, Tsinghua University,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of

Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 3Department of Computer Science and Technology, Tsinghua

University, ROOM 1-303, BLDG FIT, 100084 Beijing, China. 4SpeechOcean, Beijing, China.



Wang et al. Page 8 of 8

  0.1   0.2  0.5   1   2   5   10   20   40   60
  0.1 

  0.2 

 0.5

  1

  2

  5

  10

  20

  40

  60

False Alarm probability (in %)

M
is

s
 p

ro
b
a
b
ili

ty
 (

in
 %

)

i−vector

LDA−vector

i−vector−SVM(Linear)

i−vector−SVM(Poly)
i−vector−SVM(RBF)

L−vector−SVM(Linear)

L−vector−SVM(Poly)

L−vector−SVM(RBF)

Figure 4 The DET curves of various baseline systems.
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