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ABSTRACT

Neural word representations have proven useful in Natural Language Processing
(NLP) tasks due to their ability to efficiently model complex semantic and syn-
tactic word relationships. However, most techniques model only one representa-
tion per word, despite the fact that a single word can have multiple meanings or
”senses”. Some techniques model words by using multiple vectors that are clus-
tered based on context. However, recent neural approaches rarely focus on the
application to a consuming NLP algorithm. Furthermore, the training process of
recent word-sense models is expensive relative to single-sense embedding pro-
cesses. This paper presents a novel approach which addresses these concerns by
modeling multiple embeddings for each word based on supervised disambigua-
tion, which provides a fast and accurate way for a consuming NLP model to select
a sense-disambiguated embedding. We demonstrate that these embeddings can
disambiguate both contrastive senses such as nominal and verbal senses as well
as nuanced senses such as sarcasm. We further evaluate Part-of-Speech disam-
biguated embeddings on neural dependency parsing, yielding a greater than 8%
average error reduction in unlabeled attachment scores across 6 languages.

1 INTRODUCTION

NLP systems seek to automate the extraction of information from human language. A key challenge
in this task is the complexity and sparsity in natural language, which leads to a phenomenon known
as the curse of dimensionality. To overcome this, recent work has learned real valued, distributed
representations for words using neural networks (G.E. Hinton, 1986; Bengio et al., 2003; Morin &
Bengio, 2005; Mnih & Hinton, 2009). These ”neural language models” embed a vocabulary into
a smaller dimensional linear space that models ”the probability function for word sequences, ex-
pressed in terms of these representations” (Bengio et al., 2003). The result is a vector-space model
(VSM) that represents word meanings with vectors that capture the semantic and syntactic informa-
tion of words (Maas & Ng, 2010). These distributed representations model shades of meaning across
their dimensions, allowing for multiple words to have multiple real-valued relationships encoded in
a single vector (Liang & Potts, 2015).

Various forms of distributed representations have shown to be useful for a wide variety of NLP
tasks including Part-of-Speech tagging, Named Entity Recognition, Analogy/Similarity Querying,
Transliteration, and Dependency Parsing (Al-Rfou et al., 2013; Al-Rfou et al., 2015; Mikolov et al.,
2013a;b; Chen & Manning, 2014). Extensive research has been done to tune these embeddings to
various tasks by incorporating features such as character (compositional) information, word order
information, and multi-word (phrase) information (Ling et al., 2015; Mikolov et al., 2013c; Zhang
et al., 2015; Trask et al., 2015).

Despite these advancements, most word embedding techniques share a common problem in that each
word must encode all of its potential meanings into a single vector (Huang et al., 2012). For words
with multiple meanings (or ”senses”), this creates a superposition in vector space where a vector
takes on a mixture of its individual meanings. In this work, we will show that this superposition
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obfuscates the context specific meaning of a word and can have a negative effect on NLP classifiers
leveraging the superposition as input data. Furthermore, we will show that disambiguating multiple
word senses into separate embeddings alleviates this problem and the corresponding confusion to an
NLP model.

2 RELATED WORK

2.1 WORD2VEC

Mikolov et al. (2013a) proposed two simple methods for learning continuous word embeddings
using neural networks based on Skip-gram or Continuous-Bag-of-Word (CBOW) models and named
it word2vec. Word vectors built from these methods map words to points in space that effectively
encode semantic and syntactic meaning despite ignoring word order information. Furthermore, the
word vectors exhibited certain algebraic relations, as exemplified by example: ”v[man] - v[king] +
v[queen] ≈ v[woman]”. Subsequent work leveraging such neural word embeddings has proven to
be effective on a variety of natural language modeling tasks (Al-Rfou et al., 2013; Al-Rfou et al.,
2015; Chen & Manning, 2014).

2.2 WANG2VEC

Because word embeddings in word2vec are insensitive to word order, they are suboptimal when used
for syntactic tasks like POS tagging or dependency parsing. Ling et al. (2015) proposed modifica-
tions to word2vec that incorporated word order. Consisting of structured skip-gram and continuous
window methods that are together termed wang2vec, these models demonstrate significant ability
to model syntactic representations. They come, however, at the cost of computation speed. Fur-
thermore, because words have a single vector representation in wang2vec, the method is unable to
model polysemic words with multiple meanings. For instance, the word ”work” in the sentence ”We
saw her work” can be either a verb or noun depending on the broader context in surrounding this
sentence. This technique encodes the co-occurrence statistics for each sense of a word into one or
more fixed dimensional embeddings, generating embeddings that model multiple uses of a word.

2.3 STATISTICAL MULTI-PROTOTYPE VECTOR-SPACE MODELS OF WORD MEANING

Perhaps a seminal work to vector-space word-sense disambiguation, the approach by Reisinger &
Mooney (2010) creates a vector-space model that encodes multiple meanings for words by first
clustering the contexts in which a word appears. Once the contexts are clustered, several prototype
vectors can be initialized by averaging the statistically generated vectors for each word in the cluster.
This process of computing clusters and creating embeddings based on a vector for each cluster
has become the canonical strategy for word-sense disambiguation in vector spaces. However, this
approach presents no strategy for the context specific selection of potentially many vectors for use
in an NLP classifier.

2.4 CLUSTERING WEIGHTED AVERAGE CONTEXT EMBEDDINGS

Our technique is inspired by the work of Huang et al. (2012), which uses a multi-prototype neu-
ral vector-space model that clusters contexts to generate prototypes. Unlike Reisinger & Mooney
(2010), the context embeddings are generated by a neural network in the following way: given a
pre-trained word embedding model, each context embedding is generated by computing a weighted
sum of the words in the context (weighted by tf-idf). Then, for each term, the associated context
embeddings are clustered. The clusters are used to re-label each occurrence of each word in the cor-
pus. Once these terms have been re-labeled with the cluster’s number, a new word model is trained
on the labeled embeddings (with a different vector for each) generating the word-sense embeddings.

In addition to the selection problem and clustering overhead described in the previous subsection,
this model also suffers from the need to train neural word embeddings twice, which is a very expen-
sive endeavor.
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2.5 CLUSTERING CONVOLUTIONAL CONTEXT EMBEDDINGS

Recent work has explored leveraging convolutional approaches to modeling the context embeddings
that are clustered into word prototypes. Unlike previous approaches, Chen et al. (2015) selects the
number of word clusters for each word based on the number of definitions for a word in the WordNet
Gloss (as opposed to other approaches that commonly pick a fixed number of clusters). A variant
on the MSSG model of Neelakantan et al. (2015), this work uses the WordNet Glosses dataset and
convolutional embeddings to initialize the word prototypes.

In addition to the selection problem, clustering overhead, and the need to train neural embeddings
multiple times, this higher-quality model is somewhat limited by the vocabulary present in the En-
glish WordNet resource. Furthermore, the majority of the WordNets relations connect words from
the same Part-of-Speech (POS). ”Thus, WordNet really consists of four sub-nets, one each for nouns,
verbs, adjectives and adverbs, with few cross-POS pointers.”1

3 THE SENSE2VEC MODEL

We expand on the work of Huang et al. (2012) by leveraging supervised NLP labels instead of
unsupervised clusters to determine a particular word instance’s sense. This eliminates the need to
train embeddings multiple times, eliminates the need for a clustering step, and creates an efficient
method by which a supervised classifier may consume the appropriate word-sense embedding.

Figure 1: A graphical representation of wang2vec.

Figure 2: A graphical representation of sense2vec.

Given a labeled corpus (either by hand or by a model) with one or more labels per word, the
sense2vec model first counts the number of uses (where a unique word maps set of one or more

1https://wordnet.princeton.edu/
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labels/uses) of each word and generates a random ”sense embedding” for each use. A model is then
trained using either the CBOW, Skip-gram, or Structured Skip-gram model configurations. Instead
of predicting a token given surrounding tokens, this model predicts a word sense given surrounding
senses.

3.1 SUBJECTIVE EVALUATION - SUBJECTIVE BASELINE

For subjective evaluation of these word embeddings, we trained models using several datasets for
comparison. First, we trained using Word2vec’s Continuous Bag of Words 2 approach on the large
unlabeled corpus used for the Google Word Analogy Task 3. Several word embeddings and their
closest terms measured by cosine similarity are displayed in Table 1 below.

Table 1: Single-sense Baseline Cosine Similarities

bank 1.0 apple 1.0 so 1.0 bad 1.0 perfect 1.0
banks .718 iphone .687 but .879 good .727 perfection .681

banking .672 ipad .649 it .858 worse .718 perfectly .670
hsbc .599 microsoft .603 if .842 lousy .717 ideal .644

citibank .586 ipod .595 even .833 stupid .710 flawless .637
lender .566 imac .594 do .831 horrible .703 good .622

lending .559 iphones .578 just .808 awful .697 always .572

In this table, observe that the ”bank” column is similar to proper nouns (”hsbc”, ”citibank”), verbs
(”lending”,”banking”), and nouns (”banks”,”lender”). This is because the term ”bank” is used in 3
different ways, as a proper noun, verb, and noun. This embedding for ”bank” has modeled a mixture
of these three meanings. ”apple”, ”so”, ”bad”, and ”perfect” can also have a mixture of meanings. In
some cases, such as ”apple”, one interpretation of the word is completely ignored (apple the fruit).
In the case of ”so”, there is also an interjection sense of ”so” that is not well represented in the vector
space.

3.2 SUBJECTIVE EVALUATION - PART-OF-SPEECH DISAMBIGUATION

For Part-of-Speech disambiguation, we labeled the dataset from section 3.1 with Part-of-Speech
tags using the Polyglot Universal Dependency Part-of-Speech tagger of Al-Rfou et al. (2013) and
trained sense2vec with identical parameters as section 3.1. In table 2, we see that this method has
successfully disambiguated the difference between the noun ”apple” referring to the fruit and the
proper noun ”apple” referring to the company. In table 3, we see that all three uses of the word
”bank” have been disambiguated by their respective parts of speech, and in table 4, nuanced senses
of the word ”so” have also been disambiguated.

Table 2: Part-of-Speech Cosine Similarities for the Word: apple

apple NOUN 1.0 apple PROPN 1.0
apples NOUN .639 microsoft PROPN .603
pear NOUN .581 iphone NOUN .591

peach NOUN .579 ipad NOUN .586
blueberry NOUN .570 samsung PROPN .572
almond NOUN .541 blackberry PROPN .564

2command line params: -size 500 -window 10 -negative 10 -hs 0 -sample 1e-5 -iter 3 -min-count 10
3the data.txt file generated from http://word2vec.googlecode.com/svn/trunk/demo-train-big-model-v1.sh
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Table 3: Part-of-Speech Cosine Similarities for the Word: bank

bank NOUN 1.0 bank PROPN 1.0 bank VERB 1.0
banks NOUN .786 bank NOUN .570 gamble VERB .533

banking NOUN .629 hsbc PROPN .536 earn VERB .485
lender NOUN .619 citibank PROPN .523 invest VERB .470
bank PROPN .570 wachovia PROPN .503 reinvest VERB .466
ubs PROPN .535 grindlays PROPN .492 donate VERB .466

Table 4: Part-of-Speech Cosine Similarities for the Word: so

so INTJ 1.0 so ADV 1.0 so ADJ 1.0
now INTJ .527 too ADV .753 poved ADJ .588

obviously INTJ .520 but CONJ .752 condemnable ADJ .584
basically INTJ .513 because SCONJ .720 disputable ADJ .578

okay INTJ .505 but ADV .694 disapprove ADJ .559
actually INTJ .503 really ADV .671 contestable ADJ .558

3.3 SUBJECTIVE EVALUATION - SENTIMENT DISAMBIGUATION

For Sentiment disambiguation, the IMDB labeled training corpus was labeled with Part-of-Speech
tags using the Polyglot Part-of-Speech tagger from Al-Rfou et al. (2013). Adjectives were then
labeled with the positive or negative sentiment associated with each comment. A CBOW sense2vec
model was then trained on the resulting dataset, disambiguating between both Part-of-Speech and
Sentiment (for adjectives).

Table 5 shows the difference between the positive and negative vectors for the word ”bad”. The neg-
ative vector is most similar to word indicating the classical meaning of bad (including the negative
version of ”good”, e.g. ”good grief!”). The positive ”bad” vector denotes a tone of sarcasm, most
closely relating to the positive sense of ”good” (e.g. ”good job!”).

Table 5: Sentiment Cosine Similarities for the Word: bad

bad NEG 1.0 bad POS 1.0
terrible NEG .905 good POS .753
horrible NEG .872 wrong POS .752
awful NEG .870 funny POS .720
good NEG .863 great POS .694
stupid NEG .845 weird POS .671

Table 6 shows the positive and negative senses of the word ”perfect”. The positive version of the
word clusters most closely with words indicating excellence. The positive version clusters with the
more sarcastic interpretation.

5



Under review as a conference paper at ICLR 2016

Table 6: Sentiment Cosine Similarities for the Word: perfect

perfect NEG 1.0 perfect POS 1.0
real NEG 0.682 wonderful POS 0.843

unfortunate NEG 0.680 brilliant POS 0.842
serious NEG 0.673 incredible POS 0.840

complete NEG 0.673 fantastic POS 0.839
ordinary NEG 0.673 great POS 0.823
typical NEG 0.661 excellent POS 0.822

misguided NEG 0.650 amazing POS 0.814

4 NAMED ENTITY RESOLUTION

To evaluate the embeddings when disambiguating on named entity resolution (NER), we labeled
the standard word2vec dataset from section 3.2 with named entity labels. This demonstrated how
sense2vec can also disambiguate between multi-word sequences of text as well as single word se-
quences of text. Below, we see that the word ”Washington” is disambiguated with both a PERSON
and a GPE sense of the word. Furthermore, we see that Hillary Clinton is very similar to titles that
she has held within the time span of the dataset.

Table 7: Disambiguation for the word: Washington

George Washington PERSON NAME .656 Washington D GPE .665
Henry Knox PERSON NAME .624 Washington DC GPE .591

Philip Schuyler PERSON NAME .618 Seattle GPE .559
Nathanael Greene PERSON NAME .613 Warsaw Embassy GPE .524
Benjamin Lincoln PERSON NAME .602 Wash GPE .516

William Howe PERSON NAME .591 Maryland GPE .507

Table 8: Entity resolution for the term: Hillary Clinton

Secretary of State TITLE 0.661
Senator TITLE 0.613
Senate ORG NAME 0.564
Chief TITLE 0.555

White House ORG NAME 0.564
Congress ORG NAME 0.547

5 NEURAL DEPENDENCY PARSING

To quantitatively evaluate disambiguated sense embeddings relative to the current standard, we com-
pared sense2vec embeddings and wang2vec embeddings on neural syntactic dependency parsing
tasks in six languages. First, we trained two sets of embeddings on the Bulgarian, German, English,
French, Italian, and Swedish Wikipedia datasets from the Polyglot website4. The baseline em-
beddings were trained without any Part-of-Speech disambiguation using the structured skip-gram
approach of Ling et al. (2015). For each language, the sense2vec embeddings were trained by
disambiguating terms using the language specific Polyglot Part-of-Speech tagger of Al-Rfou et al.
(2013), and embedded in the same structured skip-gram approach. Both were trained using identical
parametrization 5.

4https://sites.google.com/site/rmyeid/projects/polyglot
5command line params: -size 50 -window 5 -negative 10 -hs 0 -sample 1e-4 -iter 5 -cap 0
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Each of these embeddings was used to train a dependency parse model using the parser outlined in
(Chen & Manning, 2014). All were trained on the the respective language’s Universal Dependencies
treebank. The standard splits were used.6 For the parser trained on the sense2vec emeddings, the
POS specific embedding was used as the input. The Part-of-Speech label was determined using the
gold-standard POS tags from the treebank. It should be noted that the parser of (Chen & Manning,
2014) uses trained Part-of-Speech embeddings as input which are indexed based on gold-standard
POS tags. Thus, differences in quality between parsers trained on the two embedding styles are
due to clarity in the word embeddings as opposed to the addition of Part-of-Speech information
because both model styles train on gold standard POS information. For each language, the Unlabeled
Attachment Scores are outlined in Table 7.

Table 9: Unlabeled Attachment Scores and Percent Error Reductions

Set Bulgarian German English French Italian Swedish Mean
Dev 90.03 68.86 85.02 73.82 84.99 78.94 80.28

wang Test* 90.17 60.25 83.61 70.10 84.99 82.47 78.60
Test 90.39 60.54 83.88 70.53 85.45 82.51 78.88
Dev 90.69 72.61 86.10 75.43 85.57 81.21 81.94

sense Test* 90.41 64.17 85.48 71.66 86.13 84.44 80.38
Test 90.86 64.43 85.93 72.16 86.18 84.60 80.69
Dev 7.05% 13.69% 7.76% 6.56% 3.98% 12.06% 8.52%

Error Test 2.47% 10.95% 12.82% 5.50% 8.21% 12.71% 8.78%
Margin Abs. 5.17% 10.93% 14.54% 5.86% 5.32% 13.58% 9.23%

Avg. 4.76% 12.32% 10.29% 6.03% 6.09% 12.39%

The ”Error Margin” section of table 7 describes the percentage reduction in error for each language.
Disambiguating based on Part-of-Speech using sense2vec reduced the error in all six languages with
an average reduction greater than 8%.

6 CONCLUSION AND FUTURE WORK

In this work, we have proposed a new model for word sense disambiguation that uses supervised
NLP labeling to disambiguate between word senses. Much like previous models, it leverages a form
of context clustering to disambiguate the use of a term. However, instead of using unsupervised clus-
tering methods, our approach clusters using supervised labels which can analyze a specific word’s
context and assign a label. This significantly reduces the computational overhead of word-sense
modeling and provides a natural mechanism for other NLP tasks to select the appropriate sense em-
bedding. Furthermore, we show that disambiguated embeddings can increase the accuracy of syn-
tactic dependency parsing in a variety of languages. Future work will explore how disambiguated
embeddings perform using other varieties of supervised labels and consuming NLP tasks.
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