Appendix: Understanding Black-box Predictions via Influence Functions
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A. Deriving the influence function Z,; yarams

For completeness, we provide a standard derivation of the
influence function Zyp params in the context of loss minimiza-
tion (M-estimation). This derivation is based on asymp-
totic arguments and is not fully rigorous; see van der Vaart
(1998) and other statistics textbooks for a more thorough
treatment.

Recall that § minimizes the empirical risk:
def 1 =
R(O) = — L(z;,0). 1
0=~ ; (2i,0) (1)

We further assume that R is twice-differentiable and
strictly convex in 6, i.e.,

def

H; < V2R(9) = %ZV%L(M) )
=1

exists and is positive definite. This guarantees the existence
of Hé’l, which we will use in the subsequent derivation.

The perturbed parameters éeyz can be written as

Oc,» = argmin {R(9) + eL(z,0)} - 3)

Define the parameter change A, = HAE,Z — é, and note that,

as 6 doesn’t depend on ¢, the quantity we seek to compute
can be written in terms of it:

db., dA.
2 = . 4
de de “)

Since 9€,z is a minimizer of (3), let us examine its first-
order optimality conditions:

0=VR(..)+ eVL(z0..). (5)
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Next, since HAQZ —fase— 0, we perform a Taylor expan-
sion of the right-hand side:

0~ {VR(é) +eVL(z, é)] + ©)
[VZR(é) + €V2L(z,9)} A,
where we have dropped o(||A.||) terms.

Solving for A, we get:
. L 1—1
A~ — [VQR(G) + eV2L(z,9)} %)
[VR(©) + eVL(,0)]

Since § minimzes R, we have VR(f) = 0. Keeping only
O(e) terms, we have

Ac~—V2R(0)"'VL(z,0)e. (8)

Combining with (2) and (4), we conclude that:

do R
Zezl = _HI'WI(z,6) 9)
de le=0 0

def
= Iup,purams(z)~ (10)

B. Influence at non-convergence

Consider a training point z. When the model parameters
0 are close to but not at a local minimum, Tup params (2) 18
approximately equal to a constant (which does not depend
on z) plus the change in parameters after upweighting z and
then taking a single Newton step from 0. The high-level
idea is that even though the gradient of the empirical risk at
6 is not 0, the Newton step from 6 can be decomposed into
a component following the existing gradient (which does
not depend on the choice of z) and a second component
responding to the upweighted z (which Zyyp, params (2) tracks).

Let g % LS VL(z;,0) be the gradient of the em-
pirical risk at 6; since 6 is not a local minimum, g # 0.
After upweighting z by €, the gradient at 6 goes from
g— g+ eVoL(z, 5) and the empirical Hessian goes from
H; — Hy + eV3L(z, 6). A Newton step from 6 therefore
changes the parameters by:

def

. 1—1 ~
N, % H5+ev§L(z,9)} [g+ev9L(z,9)}.
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Ignoring terms in €eg, €, and higher, we get N., =~
_Hgfl (g + GVQL(Z,é)). Therefore, the actual change

due to a Newton step N, . is equal to a constant —H(;l g
(that doesn’t depend on z) plus € times Zypparams(2) =
—-H 951V9L(z, 6) (which captures the contribution of z).
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