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A. Deriving the influence function Iup,params

For completeness, we provide a standard derivation of the
influence function Iup,params in the context of loss minimiza-
tion (M-estimation). This derivation is based on asymp-
totic arguments and is not fully rigorous; see van der Vaart
(1998) and other statistics textbooks for a more thorough
treatment.

Recall that θ̂ minimizes the empirical risk:

R(θ)
def
=

1

n

n∑
i=1

L(zi, θ). (1)

We further assume that R is twice-differentiable and
strictly convex in θ, i.e.,

Hθ̂

def
= ∇2R(θ̂) =

1

n

n∑
i=1

∇2
θL(zi, θ̂) (2)

exists and is positive definite. This guarantees the existence
of H−1

θ̂
, which we will use in the subsequent derivation.

The perturbed parameters θ̂ε,z can be written as

θ̂ε,z = arg min
θ∈Θ
{R(θ) + εL(z, θ)} . (3)

Define the parameter change ∆ε = θ̂ε,z − θ̂, and note that,
as θ̂ doesn’t depend on ε, the quantity we seek to compute
can be written in terms of it:

dθ̂ε,z
dε

=
d∆ε

dε
. (4)

Since θ̂ε,z is a minimizer of (3), let us examine its first-
order optimality conditions:

0 = ∇R(θ̂ε,z) + ε∇L(z, θ̂ε,z). (5)
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Next, since θ̂ε,z → θ̂ as ε→ 0, we perform a Taylor expan-
sion of the right-hand side:

0 ≈
[
∇R(θ̂) + ε∇L(z, θ̂)

]
+ (6)[

∇2R(θ̂) + ε∇2L(z, θ̂)
]

∆ε,

where we have dropped o(‖∆ε‖) terms.

Solving for ∆ε, we get:

∆ε ≈−
[
∇2R(θ̂) + ε∇2L(z, θ̂)

]−1

(7)[
∇R(θ̂) + ε∇L(z, θ̂)

]
.

Since θ̂ minimzes R, we have ∇R(θ̂) = 0. Keeping only
O(ε) terms, we have

∆ε ≈−∇2R(θ̂)−1∇L(z, θ̂)ε. (8)

Combining with (2) and (4), we conclude that:

dθ̂ε,z
dε

∣∣∣
ε=0

= −H−1

θ̂
∇L(z, θ̂) (9)

def
= Iup,params(z). (10)

B. Influence at non-convergence
Consider a training point z. When the model parameters
θ̃ are close to but not at a local minimum, Iup,params(z) is
approximately equal to a constant (which does not depend
on z) plus the change in parameters after upweighting z and
then taking a single Newton step from θ̃. The high-level
idea is that even though the gradient of the empirical risk at
θ̃ is not 0, the Newton step from θ̃ can be decomposed into
a component following the existing gradient (which does
not depend on the choice of z) and a second component
responding to the upweighted z (which Iup,params(z) tracks).

Let g def
= 1

n

∑n
i=1∇θL(zi, θ̃) be the gradient of the em-

pirical risk at θ̃; since θ̃ is not a local minimum, g 6= 0.
After upweighting z by ε, the gradient at θ̃ goes from
g 7→ g + ε∇θL(z, θ̃), and the empirical Hessian goes from
Hθ̃ 7→ Hθ̃ + ε∇2

θL(z, θ̃). A Newton step from θ̃ therefore
changes the parameters by:

Nε,z
def
= −

[
Hθ̃ + ε∇2

θL(z, θ̃)
]−1 [

g + ε∇θL(z, θ̃)
]
.

(11)
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Ignoring terms in εg, ε2, and higher, we get Nε,z ≈
−H−1

θ̃

(
g + ε∇θL(z, θ̃)

)
. Therefore, the actual change

due to a Newton step Nε,z is equal to a constant −H−1

θ̃
g

(that doesn’t depend on z) plus ε times Iup,params(z) =

−H−1

θ̃
∇θL(z, θ̃) (which captures the contribution of z).
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