Appendix: Understanding Black-box Predictions via Influence Functions

Pang Wei Koh 1 Percy Liang 1

A. Deriving the influence function $\mathcal{I}_{up,params}$

For completeness, we provide a standard derivation of the influence function $\mathcal{I}_{up,params}$ in the context of loss minimization (M-estimation). This derivation is based on asymptotic arguments and is not fully rigorous; see van der Vaart (1998) and other statistics textbooks for a more thorough treatment.

Recall that $\hat{\theta}$ minimizes the empirical risk:

$$R(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} L(z_i, \theta). \tag{1}$$

We further assume that R is twice-differentiable and strictly convex in θ , i.e.,

$$H_{\hat{\theta}} \stackrel{\text{def}}{=} \nabla^2 R(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta}^2 L(z_i, \hat{\theta})$$
 (2)

exists and is positive definite. This guarantees the existence of $H_{\hat{a}}^{-1}$, which we will use in the subsequent derivation.

The perturbed parameters $\hat{\theta}_{\epsilon,z}$ can be written as

$$\hat{\theta}_{\epsilon,z} = \arg\min_{\theta \in \Omega} \left\{ R(\theta) + \epsilon L(z,\theta) \right\}. \tag{3}$$

Define the parameter change $\Delta_{\epsilon} = \hat{\theta}_{\epsilon,z} - \hat{\theta}$, and note that, as $\hat{\theta}$ doesn't depend on ϵ , the quantity we seek to compute can be written in terms of it:

$$\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon} = \frac{d\Delta_{\epsilon}}{d\epsilon}.$$
 (4)

Since $\hat{\theta}_{\epsilon,z}$ is a minimizer of (3), let us examine its firstorder optimality conditions:

$$0 = \nabla R(\hat{\theta}_{\epsilon,z}) + \epsilon \nabla L(z, \hat{\theta}_{\epsilon,z}). \tag{5}$$

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by the author(s).

Next, since $\hat{\theta}_{\epsilon,z} \to \hat{\theta}$ as $\epsilon \to 0$, we perform a Taylor expansion of the right-hand side:

$$0 \approx \left[\nabla R(\hat{\theta}) + \epsilon \nabla L(z, \hat{\theta}) \right] +$$

$$\left[\nabla^2 R(\hat{\theta}) + \epsilon \nabla^2 L(z, \hat{\theta}) \right] \Delta_{\epsilon},$$
(6)

where we have dropped $o(\|\Delta_{\epsilon}\|)$ terms.

Solving for Δ_{ϵ} , we get:

$$\Delta_{\epsilon} \approx -\left[\nabla^{2} R(\hat{\theta}) + \epsilon \nabla^{2} L(z, \hat{\theta})\right]^{-1}$$

$$\left[\nabla R(\hat{\theta}) + \epsilon \nabla L(z, \hat{\theta})\right].$$
(7)

Since $\hat{\theta}$ minimzes R, we have $\nabla R(\hat{\theta}) = 0$. Keeping only $O(\epsilon)$ terms, we have

$$\Delta_{\epsilon} \approx -\nabla^2 R(\hat{\theta})^{-1} \nabla L(z, \hat{\theta}) \epsilon. \tag{8}$$

Combining with (2) and (4), we conclude that:

$$\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}\Big|_{\epsilon=0} = -H_{\hat{\theta}}^{-1} \nabla L(z,\hat{\theta}) \tag{9}$$

$$\stackrel{\text{def}}{=} \mathcal{I}_{\text{up,params}}(z). \tag{10}$$

$$\stackrel{\text{def}}{=} \mathcal{I}_{\text{up,params}}(z). \tag{10}$$

B. Influence at non-convergence

Consider a training point z. When the model parameters θ are close to but not at a local minimum, $\mathcal{I}_{\text{up,params}}(z)$ is approximately equal to a constant (which does not depend on z) plus the change in parameters after upweighting z and then taking a single Newton step from $\hat{\theta}$. The high-level idea is that even though the gradient of the empirical risk at θ is not 0, the Newton step from θ can be decomposed into a component following the existing gradient (which does not depend on the choice of z) and a second component responding to the upweighted z (which $\mathcal{I}_{up,params}(z)$ tracks).

Let $g \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} L(z_i, \tilde{\theta})$ be the gradient of the empirical risk at $\tilde{\theta}$; since $\tilde{\theta}$ is not a local minimum, $g \neq 0$. After upweighting z by ϵ , the gradient at $\hat{\theta}$ goes from $g \mapsto g + \epsilon \nabla_{\theta} L(z, \hat{\theta})$, and the empirical Hessian goes from $H_{\tilde{\theta}} \mapsto H_{\tilde{\theta}} + \epsilon \nabla_{\theta}^2 L(z, \hat{\theta})$. A Newton step from $\hat{\theta}$ therefore changes the parameters by:

$$N_{\epsilon,z} \stackrel{\text{def}}{=} - \left[H_{\tilde{\theta}} + \epsilon \nabla_{\theta}^{2} L(z, \tilde{\theta}) \right]^{-1} \left[g + \epsilon \nabla_{\theta} L(z, \tilde{\theta}) \right]. \tag{11}$$

¹Stanford University, Stanford, CA. Correspondence to: Pang Wei Koh <pangwei@cs.stanford.edu>, Percy Liang <pliang@cs.stanford.edu>.

Appendix: Understanding Black-box Predictions via Influence Functions

Ignoring terms in ϵg , ϵ^2 , and higher, we get $N_{\epsilon,z} \approx -H_{\tilde{\theta}}^{-1}\left(g+\epsilon\nabla_{\theta}L(z,\tilde{\theta})\right)$. Therefore, the actual change due to a Newton step $N_{\epsilon,z}$ is equal to a constant $-H_{\tilde{\theta}}^{-1}g$ (that doesn't depend on z) plus ϵ times $\mathcal{I}_{\text{up,params}}(z) = -H_{\tilde{\theta}}^{-1}\nabla_{\theta}L(z,\tilde{\theta})$ (which captures the contribution of z).

References

van der Vaart, A. W. *Asymptotic statistics*. Cambridge University Press, 1998.