Automatic Data Augmentation Selection and Parametrization in Contrastive
Self-Supervised Speech Representation Learning

« Select a distribution on the choice of augmentations and their parametrization according to the

downstream task of interest
the probability of applying an augmentation or a boundary for a
uniform law from which a augmentation’s internal parameter
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speech sample to the ID of the speech sample it originates from.
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Figure 1: The three steps of the validation process. (a) select the best augmentation distribution. (b) contrastive pretraining alterating
the input points with the selected augmentation. (c) use the learned speech representations as input for downstream finetuning.



Figure 2: Difference of the probability of picking an augmentation between the best and worst scoring augmentations, depending on the
downstream dataset. Green bars show augmentations that are more likely to get picked for the best scoring distributions for that task.
For instance, the far right bars indicate that clipping is an encouraged augmentation on VoxForge, and is discouraged on VoxCelebl.

Table 1: Parameters considered, descriptions and ranges
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RCT: RANDOM CONSISTENCY TRAINING FOR SEMI-SUPERVISED SOUND EVENT DETECTION

« a novel semi-supervised learning (SSL) strategy, for sound event detection (SED) task

« Hard mixup

add multiple samples together, and the mixture is labelled with all the
classes in all original samples
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Table 1: Ablation study for RCT. Different modules are added

step by step and each score is obtained by averaging three trials. Table 2: Comparing the proposed SSL strategy with other al-

ternatives. Each score is obtained by averaging three trials.

Model PSDSl (%) PSDSQ (%] Model PSDSl (%) PSDSQ (%]
Baseline 347 53.7 :
+ Vanilla mixup 34.9 57.9 Baseline [12] 34.7 53.7
+ Hard mixup 36.4 57.4 SCT [16] 36.0 55.6
+ RandomWarping 38.1 58.5 ICT [7} 37.7 57.7
+ ICT consistency @] 38.0 59.2 ICT+SCT 37.0 58.7
+ Self-consistency 40.1 614 RCT (proposed) 40.1 61.4
Table 3: Comparing the proposed system with DCASE2021
top-ranked submissions. All models are named in the form of
0.26- — Baseline (MeanTeacher) network architecture plus the SSL strategy.
0244 —1cT
5 0221 —— Self-consistency (proposed) Model PSDS: (%) PSDS2 (%)
g“-” CRNN (baseline) [[12] 34.7 53.7
0.18- FBCRNN+MLFL |E!]| 40.1 59.7
0.164 CRNN+IPL || 40.7 65.3
0.141— : . : : : . , CRNN+DA [21] 41.9 63.8
25 50 75 100Epﬂch125 150 175 200 CRNN+HeavyAug. 434 63.9
Figure 3: Cross-entropy loss of strongly-supervised validation EEENN-;E]% ; || 5 igi gg?
data when training with or without self-consistency loss, com- nit+ ' '

paring with the ICT scheme [[7). CRNN+RCT (proposed) 44.0 67.1




Deep versus Wide: An Analysis of Student Architectures for Task-Agnostic Knowledge

Distillation of Self-Supervised Speech Models

* how varying the depth and width impacts the internal representation of the small-footprint model.

» task-agnostic distillation

« apply two simple KD approaches: prediction layer distillation and layer-to-layer (L2L) distillation methods.
» For student models, alter the depth and width of self-attention layers only while fixing the size of the CNNSs.
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Figure 1: Illustration of student model trained by KD between
student’s last and teacher’s intermediate layers based on Dis-

tilHUuBERT [16].
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Figure 2: lllustration of student model trained by KD between
intermediate-layers such as FitNets [19].




Table 1: Evaluation result for each model distilled from HuBERT BASE and each task on SUPERB. The values in the first and second
row are taken from [12] and [16], respectively. Pred. means the predication-layer distillation and L2L indicates the layer-to-layer

distillation in the second column. For clarity, the KD models are indexed from (a) to (h) as shown in the second column. Table 2: Model settings of teacher and student models. With
respect to self-attention blocks, HALF and FOURTH means the
Model ‘ KD Loss PR ASR (w/LM) KS QbE SID ASV SD IC SF ER parameter reductions to one half and one fourth, respectively,
PER | WER] AceT | MTWVT | Acct | EER] | DER] | Acet? F17/CER] AccT | Rank] and ONE is the same as the HuBERT BASE.
HuBERT BASE | - | 541 | 6.42(479) | 9630 | 00736 | 8142 | 511 | 5.88 | 9834 | 8853/25.20 | 64.92 | 17 Models | #Params _ #layers _Embed FEN _#Head
DistilHUBERT | Pred. | 1627 | 13.34(921) | 9598 | 00511 | 73.54 | 855 | 6.19 | 94.99 | 82.57/35.59 | 63.02 | 538 HBERT aoen o1 | a6t 26 1oas 4006 le
12-L HALF (a) Pred. 309 ITETTEOT) g6 97 0.0501 69.11 6.32 6.67 9491 | 84.49/32.54 | 62.76 4.6 DistilHuBERT [16] | 23.49M 2 768 3072 12
by L2L 10.67 1096 (7 68} Q724 L0604 69.52 6.13 6.81 96.97 | 86.11/30.93 | 63.24 2.6 12-L HALF 26.87TM 12 384 1536 6
12-L. FOURTH (c) Pred. 18.92 14.02 (9.25) 96.44 0.0495 4951 6.74 7.12 87.03 | 81.21/37.27 | 62.82 8.1 12-L FOURTH 993M 12 192 768 3
(d)L2L 16.96 13.84 (9.20) 96.40 0.0562 47.67 6.41 7.12 91.62 | 84.81/32.77 | 6l.84 7.0 3-L ONE 30.58M 3 768 3072 12
3-L HALF 10.90M 3 /4 1536 6
31 ONE (e) Pred. 13.34 12.23 (8.64) 96.69 0.0489 75.71 6.48 6.56 94.15 | 82.89/34.65 | 63.95 4.6 oL HALE | 1623M P 354 5% P
(f)y L2L 13.96 12.94(9.11) 96.52 0.0568 3776 0.8 17 96.02 | 8599/32.38 | 62.57 5.2
41 HALF (g) Pred. 18.62 1391 (927 96.22 L0482 621.59 6.86 6.69 O1.88 | 82.78/35.75 | 61.83 8.1
(h) L2L | 18.11 14 48 (9.86) 06.48 0.0502 B2 T 9491 | 81.82/3736 | 62.78 7.5

prediction-layer loss is suitable for wider architectures such as (e) ,
whereas L2L loss is effective for deeper architectures such as (b) and (d).

deeper networks have higher performance in content-oriented tasks such as PR, ASR and QbE,
wider networks have higher performance in speaker-oriented tasks such as SID and SD.



Table 3: Evaluation result for each model distilled from HuBERT LARGE. The values of first row are taken from [12]. The values shown
from the second row are the results of the KD models trained in our experiment.

Model KD Loss | _PR_| ASRW/IM)|| KS | QbE | SID | ASV | SD | IC SF ER |
PER} | WERy || Acct | MTWVT [ Acct | EER] | DERY [ Acct |[ FIT/CER] | Acct | Ranky Table 2: Model settings of teacher and student models. With
HuBERT LARGE 353 | 3.62(294) | 9529 | 00353 | 9033 | 598 | 575 | 98.76 |[89.81/21.76 | 67.62 | 27 .
| | | | | | I | | I respect to self-attention blocks, HALF and FOURTH means the
. Pred. 9.67 | 9.59(6.84) || 9579 | 0.0507 | 49.25 | 584 | 620 | 95.07 || 84.88/31.17 | 63.59 | 4.2 . :
L2L 797 | 924682 | 9624 | 00513 | 5242 | 636 | 6.60 | 9692 ||87.26/2892 | 64.51 | 32 parameter reductions to one }m{f and one ﬁ)ur‘fﬁr m_',‘pg{;ﬁpg,’vr
PP — Pred. 14.10 | 12.49(8.47) || 96.20 | 0.0482 | 37.18 | 6.86 | 693 | 91.01 || 83.66/35.11 | 62.45 | 6.8 . -
= L2L 12.86 | 12.91(9.11) || 9534 | 00443 | 4751 | 726 | 7.05 | 92.86 | 83.8313422 | 6220 | 7.4 and ONE is the same as the HuBERT EASE.
3L onE Pred. 12.11 | 11.35(8.00) || 96.50 | 0.0474 | 7697 | 7.22 | 6.61 | 96.63 ||85.36/31.60 | 65.80 | 3.7
LoL 1024 | 12.23(8.78) || 9640 | 00540 | 6890 | 7.59 | 7.33 | 9697 ||84.56/32.88 | 6522 | 43 Models | #Params #Layers Embed. FFN #Head
A Pred. 1578 | 13.28(9.34) || 96.20 | 0.0430 | 60.17 | 7.17 | 6.77 | 94.02 || 84.67/33.82 | 64.55 | 59
L2L 15.11 | 14.31(9.84) || 96.01 | 00532 | 5535 | 747 | 7.81 | 9272 ||84.04/34.33 | 6340 | 69 HuBERT BASE [9] 94.68M 12 768 3072 12
Table 1: Evaluation result far each model distilled from HuBERT BEASE and each task on SUPERB. The values in the|first and second HuBERT LARGE [g] 316.61M 24 1024 4096 16
row are taken from [12] and [16], respectively. Pped. means the predication-layer distillation and LPL indicates the layer-to-layer s s - - ~ -
distillation in the second colyuimn. For clarity, the Kf) models are indexed from (a) to (h) as shown in the second columpn. DistilHuBERT “6] | 23.49M = 768 3072 12
Model KD Loss | _PR_| ASR (w/LM) | KS QbE | SID | ASV SD IC SF | ER 12-L HALF 26.87TM 12 384 1536 B
PER] | WERJ AccT | MIWVT | Acef | EER] | DERJ | Acef || FIT/CER] || AceT | Rank) 12-L. FOURTH 9.93M 12 192 168 3
HuBERTBASE | - || 541 | 6.42(479) [ 9630 | 00736 | 81.42 | 511 | 588 | 98.34 |[88.53/2520 || 64.92 | 17
DistlHuBERT | Pred. | 1627 | 13.34(921) | 9598 | 00511 | 73.54 | 855 | 6.19 | 94.99 ||8257/3559 || 63.02 | 538 3-L ONE 30.58M 3 T68 3072 12
191 BALE (@) Pred. || 13.09 | 11.87(8.07) | 9697 | 0.0501 | 69.11 | 632 | 6.67 | 94.91 |[84.49/3254 || 62.76 | 4.6 3-L HALF 10.90M 3 384 1536 6
- (b)L2L | 1067 | 1096(768) | 9724 | 00604 | 6952 | €13 | 681 | 9697 |[86.11/3093 || 63.24 | 26
2L rourTn | (©Pred. [ 1892 [ 14.02(925) | 9644 | 00495 | 4951 | 674 | 7.12 | 87.03 |[8121/3727 [62.82 | 81 6-L HALF | 16.23M 6 384 1536 6
< (dL2L || 1696 | 13.84(920) | 9640 | 00562 | 4767 | 641 | 7.2 | 91.62 |[8481/32.77 | 61.84 | 70
Ao (e Pred. || 13.34 | 12.23(8.64) | 96.69 | 0.0489 | 7571 | 648 | 6.56 | 94.15 |[82.89/34.65 || 63.95 | 46
- ONE (ML2L | 1396 | 12.94(9.11) | 9652 | 00568 | 47.76 | €18 | 7.17 | 96.02 |[8599/3238 || 62.57 | 52
y (o) Pred. | 1862 | 13.91(927) || 9622 | 0.0482 | 62.59 | 686 | 6.60 | 91.88 ||82.78/35.75 || 61.83 | 8.1
L HALE (WL2L || 18.11 | 14.48(9.86) | 9648 | 00502 | 6040 | 682 | 7.31 | 9491 |[81.82/37.36 ||[62.78 | 7.5

students distilled from HUBERT LARGE show better performance on PR, ASR and SF tasks in particular.

Table 4: Evaluation result for each model distilled from HuBERT BASE. The values in the fifth row represent the model trained by the
linear interpolation loss {Comb.) between the prediction-layer and L2L losses.

Model KD Loss | PR_| ASR(w/LM) | KS QbE SID | ASV | SD IC SF ER
— [PER] WER] AccT | MTWVT | AccT | EER] | DER] | AccT | FIT/CER] | Accl | Rank]
HuBERT BASE | - | 541 | 6.42(4.79) | 9630 | 00736 | 8142 | 511 | 588 | 98.34 | 88.53/25.20 | 64.92 | 1.3
DistilHuBERT | Pred. | 1627 | 13.34(9.21) | 9598 | 00511 | 73.54 | 855 | 6.19 | 9499 | 82.57/35.59 | 63.02 | 4.1
Pred. | 15.14 | 12.72(8.68) | 96.85 | 0.0504 | 67.06 | 6.36 | 6.81 | 93.75 | 83.65/34.35 | 63.72 | 3.4
6-L HALF 2] 1340 | 1266(859) | 9638 | 00545 | 6290 | 685 | 695 | 9586 | 8380/3351 | 6309 | 33
Comb. | 14.68 | 12.43(8.51) | 9677 | 00516 | 6575 | 681 | 6.83 | 94.57 | 84.32/33.99 | 64.78 | 2.9




Pushing the limits of raw waveform speaker recognition
* propose a new raw waveform speaker recognition architecture, namely RawNet3
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FC ture. AFMS refers to the extended feature map scaling module
of RawNet2.

1 owipur: 1256

Figure 1: The RawNet3 architecture. It is in a hybrid form of
the ECAPA-TDNN [_] and the RawNet2 [72] with additional
features including logarithm and normalisation. k, d, p, C, S,
and @ correspond to kernel length, dilation, max pooling size,
number of channels, stride size of the parameterised filterbank
layer, and element-wise addition.



Pushing the limits of raw waveform speaker recognition

Table 1: Results on supervised learning using the AAM- Table 2:_ Results on self-supervised leaming uwsing the
softmax [41] objective function. Trained on VoxCelebl! &2 de- DINO [25 ] framework. Trained on VoxCeleb2 development set.
velopment sets. The two numbers in Hz denote frame resolu-
tions after the first parameterised filterbank and the last max Configurations EER(%) minDCF
pooling layer.
RawNet3 5.74 0.3507
Configurations EER(%) minDCF — param fbank log 10.46 0.5775
— param fbank log&mean norm 9.98 0.5386
RawNet3 (stride=48) 1.05 0.0763
— param fhank norm 1.22 0.0838 + DINO last 133«'&[’ norm 5.40 0.3396
— param fbank log&norm 1.23 0.0927 — DINO T momentum 0.99 6.17 0.3987
— ché&context stat pool L.45 0.0975 — half batch size (400—200) 6.87 0.4513
—+ stride=10, 1600Hz— 106Hz 0.89 0.0669
—+ stride=16, 1000Hz—66Hz 0.90 0.0593
— stride=24. 666Hz—44Hz 0.96 0.0773 Table 3: Results on fine-tuning the pre-trained model. Trained
— stride=64, 250Hz— 16Hz .11 0.0851 on VoxCelebl development set.
— stride=96, 166Hz— 1 1Hz 1.31 0.0937
, , , , Configurations EER(%) minDCF
Table 4: Comparison with recent literature of supervised -
speaker verification. e calculated with Piarger = 0.01. RawNelt3 (w/ pre-train) 2.18 0.1519
RawNet3 (w/o pre-train) 2.98 0.2268
In Feat EER(%) minDCF
Desplanques et al. [2] MECC 0.87 0.1066' Table 5: Comparison with self-supervised learning models.
Ravanellietal. [17] Fbhank 0.69 N/R
Kuzmin et al. [ ¥] Fbank 0.66 0.0640° Framework EER(%) minDCF
Zhu et al. [12] Waveform  2.60 0.2390 Huhetal. [27] AP+AAT 8.65 0.4540
Lietal [11] Waveform  2.31 N/R Xia etal. [25] AMU‘PJE'*‘:E 823 0.5900
Lin et al. [1 5] Waveform  1.95 0.2030 ) ug(ProtoNCE)
Kim etal [ 16] Waveform  1.29 0.1420 Mun et al. [27] CEL. 8.01 N/R
Ours —stride=10 Waveform  0.89 0.0659 Taoetal. [70] Contrastive 7.36 N/R
Ours —stride=16 Waveform  0.90 0.0593 Sang et al. [31] SSReg 6.99 0.4340

Ours DINO 540 0.3396




Speech Sequence Embeddings using Nearest Neighbors Contrastive Learning

guery-by-example spoken term discovery

Voice Activity Detection
Time stretch
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Figure 1: The main steps of our method. 0) Train a model fy with the NTXent loss on time-stretched pairs of sequences of speech. 1) retraining another SSE model

Use fo to encode many random sequences of speech from the corpus. 2) List close embeddings in the kNN as positive pairs. 3) Use the
speech sequences associated to the positive pairs to train a new model f1. Go back to step 1 using f| instead of fo and iterare.



Speech Sequence Embeddings using Nearest Neighbors Contrastive Learning

05 W initialisation
B iteration 1
0.4 iteration 2
W iteration 3 _
0.3 ® iteration 4 Supervision  Models dev-clean dev-other test-clean test-other
& — unsup. Max-pooling 0.07 0,048 0.07 0,047
g 02 self-sup. CAE-Siamese | 021 0,154 0212 0.151
selfesup. Owurs (iter. 2) 0,398 0,307 0,399 0,305
0.1 weakly-sup.  Topline [ 0,780 0.647 0,754 0,648
00 Table 1: Phoneme-ngrams MAP computed on LibriSpeech held-
WOk Ml MEe HfaB,geRT {‘;%;’3 out sets for different SSE models. All models take as input fea-
o) fayerts) tures the Wav2vec2.0 Base at layer 8
Feature types
Figure 3: Phoneme-ngrams MAP computed on LibriSpeech
dev-clean for different iteration of our model and different in-
put feature types
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Figure 2: NED/COV curves on Zerospeech corpora. Our method is represented with a line of blue dots and each other competitors
as grey points: Garcia-Granada (A [133]), Jansen (B,[6]), Réiséiinen (LLM,N [I7] and D (i8] and G,.H [9)) , Kamper (O [4] and P [134]),
Lynsinski (I.L,J [[I0]), Bhati (E,F|[L1]).

Models buckeye xitsonga mandarin  french english  average
Max-pooling 0.05 0053 0,075 0039 0052 0,054
CAE-Siamese 0.16 0,23 0.26 0.2 0.19 0.208
Ouwrs (iter. 2) 0,235 0,362 0,277 0,283 0,346 0,301
Topline 0.751 0,948 0,822 0.71 0,857 0818

Table 2: Phoneme-ngrams MAP computed on Zerospeech cor-

the Wav2vec2.0 Base at layer 8

pora for different SSE models. All models take as input features



Exploring Semi-supervised Learning for Audio-based COVID-19 Detectionusing FixMatch

« A semi-supervised learning framework (SSL) for audio-based COVID-19 detection.

Labelled samples are first used to develop the supervised model, which is then adopted to gather the predictions for the weakly
augmented unlabelled samples. Those with the predicted probability above a threshold for each class are selected as the
confident samples. Their predictions are served as the artificial labels for the corresponding strongly augmented samples, which

are combined with the labelled dataset to further optimise the model.
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Exploring Semi-supervised Learning for Audio-based COVID-19 Detectionusing FixMatch
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Figure 2: Model structure. Three different modalities are used,
and VGGish is used for feature extraction. These features from
different modalities are concatenated and processed by fully
connected layers for binary classification.

Task 1: Distinguish positive participants from negative
(healthy) participants, which is the general case and referred
as 'Pos-Neg’.

Task 2: Distinguish symptomatic positive participants who
reported at least one symptom from asymptomatic negative
participants. This is expected to be a simple task as the au-
dio sounds may show clear difference between the two sub-
groups. This task is referred as ‘sPos-aNeg'.

Task 3: Distinguish symptomatic positive participants from
symptomatic negative participants, refereed as ‘sPos-sNeg’.

Task 4: Distinguish asymptomatic positive participants from
asymptomatic negative participants, refereed as ‘aPos-aNeg'.

Size of labelled training data (Task1)

SL 100 FMM 100 SL75 FMM 75 SL50 “ FMM 50
LU S w ~ ~
LT T T wn ~ o re) o :
[T-] : ™ g ] 3 —
£542338 23,25;3 48233
o [=] o =
ROC-AUC SENSITIVITY SPECIFICITY

Figure 3: System performance with different percentages of la-
belled data within [100% 75% 50%] for SL model and FMM®.
FMM? outperforms or shows comparable performance as SL
(ROC-AUC), and vields higher relative improvements or more
balanced sensitivity and specificity with less labelled data.

 Comparison with supervised model

Table 1:

System performance using supervised learning (SL)

and SSL of pseudo labelling (PL) and Fixmatch (FMM) for

COVID-19 detection.

Both static * and dynamic *

learning

d
schemes are reported. FMM® outperforms other systems.

System

ROC-AUC

Sensitivity

Specificity

SL

0.65(0.59-0.71)

0.62(0.54-0.69)

0.56(0.49-0.64)

PL®
pLd
FMM*
FMM®

0.65(0.58-0.70)
0.67(0.61-0.73)
0.67(0.61-0.73)
0.69(0.63-0.74)

0.67(0.59-0.74)
0.80(0.73-0.86)
0.68(0.61-0.75)
0.65(0.58-0.73)

0.51(0.43-0.58)
0.41(0.34-0.48)
0.54(0.46-0.62)
0.63(0.56-0.71)

» Evaluation for different subtasks

Table 2: System performance for SL and FMM? for Tasks 2-4. Number of samples for each task is included in parenthesis (training/test).

FMM?® shows great advantages in balancing sensitivity and specificity.

Task System Accuracy ROC-AUC Sensitivity Specificity
e e | Sy (OSOTS IR D04 1070
L Ao S e o




Speech Pre-training with Acoustic Piece

« Extract the patterns in HUBERT codes, named “acoustic piece” , and take it as the target label for

Acoustic Unit Discovery System

(e.g., K-means on MFCC)

|z1||2‘2||15||z‘||25||zsl
HUBERT
| Transformer l

v ] T 4 0
O] sk sk s [ ] [

\ |
| CNN Encoder |
, 7
TR

Figure 1: The HuBERT model [4]].

» In the first iteration, the assigned labels are generated with k-means
clustering (k=100) on the MFCC features extracted from the raw audio
data. In the second iteration, the labels are generated with k-means
clustering (k=500) based on the 6th layer hidden representations of the
HUBERT model after the first iteration.

| Codes corresponding to “mister” in the four samples

... 178 285 285 285 285 279 279 138 374 374 374 224...
...300 285 285 285 285 378 279 138 374 374 374 52...
...178 285 285 285 285 378 279 138 374 374 52...
...300 285 285 285 285 258 378 279 138 374 374 52...

* Analysis on HUBERT Codes

Ful I 12| =

Table 1: The codes of “mister” in different samples. The bold
codes are shared by the four samples.

92

Percentage
[+] 1]
(=3} (=] (=]

(] =]
p

==}
]

Figure 2: The Mel-Spectrum of four sentences. The part in the 30 || | ||H|I|IHHHHHHHH

green box corresponds to the word “mister”.

Phonemes

Figure 3: The average percentage of the sharing code for each
phoneme. The x-axis denote 69 phonemes sorted according to
the value of the y-axis.



Speech Pre-training with Acoustic Piece

« Merge the highly frequent code patterns into one piece
 first use the 6th layer of the released HUBERT model to generate original labels with the offline clustering, then do
sentence piece on it with different vocabulary to generate acoustic piece labels

« predefined vocabulary sizes of 1k, 2k and 3k.

Hubert codes 178 285 285 285 285 378 279 138 374 374 52

l | log Pore (Y|X) + wi log Poa(Y') + we|Y| (1)
SP result 92 477 477477477 742 810 30
H l B & sl = a
‘.ﬁEDUEtlﬁ 97 477 AFF ATT 47T 742 742 B10 810 810 30 where Y is the predicted text, |} | 1s the length of the text, and
piece |abels wy and wo denote the language model weight and word score.

) . , The decoding hyperparameters are searched with A.\sﬂ
Figure 4. Example of the acoustic piece generation.

« Dataset
e pre-training: Libri-Light , VoxPopuli , GigaSpeech
« fine-tuning: train clean-100 subset (100 hours labeled data) of LibriSpeech



lest

Model M e o
— Method | Precision Recall  Fl
wav2vec 2.0 BASE None .5 29.7 HuBERT codes 0.387 0.672 0421
WilM Baze Noa: M5 2.2 Acoustic piece 0.579 0.712  0.628
WavlM BAsE+ None »E 26.7 P . ) .
*HuBERT-AP Base None 17.0 s i
*HuBERT-AP Base+ Nomne 16.9 n3 . T . . .
T B Tgram T N Table 4: Quantitative evaluation of segment E.Joundanes of dif-
Discrete BERT 4-gram 9.0 17.6 ferent methods wrt. golden phoneme boundaries.
wav2vec 2.0 BASE 4-gram 55 11.3
HuBERT BAse 4-gram 6.1 11.3
WavIM Base 4-gram 57 10.8
WavlM Base+ 4-gram 54 9.8
*HuBERT-AP Base 4-gram 55 10.6
*HuBERT-AP BASES Ao 53 96 Model test clean test other
10-hour labeled HuBERT 34 8.1
wav2vec 2.0 BASE None 1.1 176 AP 1k 31 7.1
WavlM BASE None 98 16.0
WavlM BAsE+ None 9.0 14.7 AP Ik + HuBERT 32 7.1
*HuBERT-AP BASE None 9.1 15.2 AP 2k 3.2 7.3
*HuBERT-AP BAsE+ None 8.4 13.9 AP 3k 31 72
DeCoAR 20 4-gram 54 153
Dnscrete BERT 4-gram 59 14.1 AP 5k 32 73
wav2vec 2.0 BASE d-gram 4.3 9.5 AP 10k 33 7.5
HuBERT BAse 4-gram 4.3 9.4
WavIM Base 4-gram 4.3 9.2
?Il;vﬁkgﬁslf; j‘ﬂm‘-" :3 gﬁ Table 5: The influence of vocabulary size of the sentence piece
u -A ASE -EIHJTI e o I E3d I ”ood A LT "
SHuBERT-AP BAsE+ 4 gram 4l 4 model. “AP” means our method and “1k”, “2k™ ,“3k”, “5k”,
I " - [y ]
700 B our labeled 10k” mean different vocabulary sizes.
wav2ver 2.0 BASE None 6.1 13.3
WavlM BASE None 537 12.0
WavlM BAsE+ None 4.6 101
*HuBERT-AP Base None 4.9 10.7
*HuBERT-AP Base+ Nomne 4.6 9.5
DeCoAR 20 4-gram A0 12.1
DiscreteBERT 4-gram 4.5 12.1
wav2ver 2.0 BASE 4-gram 34 8.0
HuBERT BAse 4-gram 34 g.1
WavIM Base 4-gram 34 7.7
WavlM Base+ 4-gram 29 6.8
*HuBERT-AF BAsE 4-gram 31 7.1
*HuBERT-AP Base+ 4-gram 29 6.6

Table 3: WER of ASK on the LibriSpeech and rest sets, when
trained on the Librilight low-resource labeled data setps of
§ hour {0 hours and the clean [00h subset of LibriSpeech. *
means our method + means pre-training with I M wpdate steps.



Acoustic Feature Shuffling Network for Text-Independent Speaker Verification

« Propose an acoustic feature shuffling network to learn the order-insensitive speaker embeddings via a
joint learning method..

« Backbone: SE-ResNet
« Dataset: Voxceleb?2

« Multi-scale segments shuffling
» the local sequential dependency is important for speech perception,

M e e e and the frame-level shuffling would completely convert the feature
Kullback-Leibler Divergence Loss .
[ E B sequence to noise sequence
speaker . .
000 O . 0 000 « different lengths of text contents needs different scales to shuffle
! pesker ! segments
EEEEEE 7 EEEEEN
T I « Joint learning approach
SE-ResNet34 [ SE-ResNet3d i
T T » the parameters are updated independently
ﬂ_[ﬂ_ﬂ[][ﬂﬂ__[][m —* [ Multi-scale Segments Shuffling Loss(\) = Lossaanm(A) + LosspaT(A) + Drrn(A,8)
t I~ - .
E— R '%m_[@;!_]g_ﬂ._ﬂ@g__%‘ LOSS(Q) = Lossaa ;1_!(9) + LGSSBHT(Q} + DKL(A, 9) [
T RITITIESTI I
. (000 - - -y

Figure 1: Acoustic Feature Shuffling Network.



Randomly select 5 speakers from cleaned

Acoustic Feature Shuffling Network for Text-Independent Speaker Verification

Table 1: comparison of EER (%) performance on the cleaned testsets of different segment scales.

Model training method segment scale | feature sequential order of train data EER(%)
: f frames al ord shuffied ord Vox1-O* | VoxI-E* | VoxI-H*
VoxCelebl, every speaker only provides an — e e e L
. : : : — v 7596 7.660 11.004
utterance. Acoustic feature shuffling is carried on Pool ! y v 2052 | 2012 | 3569
Symmetric KLD v v 1.715 1.644 2.801
all utterances at many segment scales, so lots of — 7 I795 | T8 [ 292
Pool 10 v v 1529 1.392 2410
features are generated from every utterance. Symmetric KLD ¢ ¢ 1300 | 1343 | 23
SE-ResNet34 — v 1.306 1.335 2.360
; Pool 50 v v 1.369 1.250 2246
- - - - - Symmetric KLD v ' 1.327 1.191 2.171
[ e idioze id10284 d10282 @  id10206 @  id10273 | — 7 1500 1588 3355
_ Pool 80 v v 1.279 1.255 2335
Symmetric KLD v v 1.215 1.231 2.157
° o« ° — 7 1311 1266 | 2204
° e * o o Pool 100 v v 1327 1349 2318
. ® o = ¢ . °* (a) Symmetric KLD v v 1274 1.195 2.179
i [ ] ® L . ® * These are just separately short for VoxCeleb1-O,VoxCeleb1-E and VoxCeleb1-H testset.
. ° L] L
] ¢ L .
L] Py ™ L o
. . L * o °* . . . Table 2: comparison of EER (%) performance on the cleaned
testsets of different multi-scale architectures.
multi scales EER(%)
Model of frames |Vox1-O*|Vox1-E*|Vox1-H*
® idiozo id10284 idi0282 @  idi02%6 @  id10273 10-50-80 1412 1300 3314
- SE-ResNet34 10-50-100 | 1.242 1.258 2218
+ Symmetric KLD| 10-80-100 | 1.316 1.221 2.203
e * ® 50-80-100 | 1.183 1.220 | 2.152
®
_ $3ES et O
[ ] [ ]
=. ™ '.. ® . Table 3: comparison of EER (%) performance on the cleaned
¢ ¢ testsets with recently reported ResNet34-based systems.

Model EER(%)

. . -0)#* EE -H#*
Figure 3: 2D t-SNE plot of speaker embeddings. (a) are speaker ResNet34 18] Vof:s?o Volx é IE VO; 12;{
embeddings extracted from the baseline SE-ResNet34; (b) are ResNet34+Circle-Stage [19] | 131 | 151 | 2.6l
speaker embeddings extracted from the proposed joint learning ResNet34+ISKConv+MSSP [20]| 1.292 | 1.319 | 2.396
method. SE-ResNet34 1412 | 1.353 | 2419

SE-ResNet34+Symmetric KLD | 1.183 | 1.220 | 2.152




Self-Supervised Speaker Verification Using Dynamic Loss-Gate and Label Correction

* Propose dynamic loss-gate and label correction (DLG-LC) to alleviate the performance degradation
caused by unreliable estimated labels. L=t % (- M .

r
eE{el,ez}"-' E{ 1o s ”e ”

Student ) Table 1:

Comparison of DINO with other self-supervised

Proiection ! ’ speaker verification work. EER (%) and minDCF are evaluated
> ) ' | Encoder ———» | + Softmax ! on Vox-0 test set.
. Head ; |
Short ; S .
¢ 4 Method EER (%) minDCF
cosine similarity lEMA p2 |ogp1 ggg}i T%Ej}g
A i GCL[7 . 15.26 .
Teacher ‘: Stop i-vector 15.28  0.63 (p=0.05)
: S : pmmmmmnes ----, Gradient AP + AAT (8] 8.65  0.45 (p=0.05)
Ly Lo > | rojection | | : Centering :_, @ SimCLR + uniform_[9] 8.28 0.610
ng - Encoder Head | ' Softmax | MoCo + WavAug [[10] 8.23 0.590
: ; emmmmemeeees ’ Unif+CEL 8.01 .
DINO 31.23 0.990
) + EMA 7.02 0.579
Figure 1: Framework of Distillation with no label (DINO) for self-supervised speaker representation learning ++ Multi-Crop 6.35 0.566
\) —— Data with reliable pseudo labels Tt COSin: IOSS 6.16 0.524
= |\ —— Data with unreliable pseudo labels
* Dynamic Loss-Gate £
24
" /Loss-gated Laarning'\l i 2 o
Contrastive Lot —
it ] Lanﬁs ) . % Classification Loss % 10 20 30 40 50 p(i‘) ('u 1, 0-2 ) + AQN (!1.2 ! 0-2 )
ein T e, ‘ZT Classification Loss Epochs
/’,Encoder\\\ Encoder \\ 3 K S K S K 016 f— r:lhab‘\e1 unreliable . —
A ey (] (2] L | = T :ipi(T) = p2(7)
i1 &g i
[Augmenialionl [Augmenialion] = > Encoder . I/’Encoder\‘\--n /Encoder “:-- = N
z1 e i Z $ \ T a . N . d X : ES(CUS(ﬂyi,i+7””
i Augmented | ! A ted y = — 10
Hoomiosoihoior bt ° [ ] (B ] pic =) Licrlog—
e . S, . i=1
Stage I: Contrastive learning Stage II: Iterative self-supervised leamning

-150 -125 -100 -75 -50 -25 00 25

log(loss)

. o _ 7 — ps(cos(Oy, i+m)) 4 Ztl' o eS(cos(By, i)
Figure 2: Loss distribution of LGL on Voxceleb 2. Loss value is i=1.is4

scaled by log function. And the lines are estimated by GMM.



Self-Supervised Speaker Verification Using Dynamic Loss-Gate and Label Correction

» Label Correction
» the model’s output prediction is more reliable than pseudo
labels which are generated by clustering

N
LLC' - Z ]]-Ii:}‘r.,lllax[ﬁij}‘TzH(ﬁ'i ‘ pi) (8]

i=1

where p; and p; represent the output probability of augmented
segments and their corresponding clean version respectively.

H(-) denotes the cross-entropy between two probability distributions.

L=Lprc+ Lic Table 3: EER (%) comparison on Vox-O test set for different
iterations of the proposed DLG-LC with other strategies. Sim-
CLR and DINO mean that we simply used all the estimated
pseudo labels without any loss-gate during training process.

Method SimCLR[@] DINO LGL DLG-LC

Loss-Gate X X v v
Iter-1 6.281 4.255 3.520 2.723
Iter-2 5914 3.946 2410 1.888
Iter-3 5.547 3.824 2.070 1.670
lter-4 4.872 3.691 1.950 1.495

Iter-5 4484 3.510 1.660 1.468

Table 2: EER (%) comparison on Vox-0, E, H of the proposed
DLG-LC in Iteration 1. In this experiment, pseudo labels are
estimated from our pre-trained DINO system. DINO means we
simply used all the data with the estimated pseudo labels as the
supervisory signal without any loss-gate during system training.

Method Vox-O Vox-E Vox-H
DINO 4255 4900  8.005
+LGL 3590 4373  6.935
+DLG 3202  3.525  5.805
++LC 2723 3179 5.442

Table 4: EER (%) comparison for different self-supervised
speaker verification methods on Vox-0O, E, H

Method Clustering  Iter Vox-O Vox-E  Vox-H

AHC(7500) 7 2.10 - -
AHC(7500) 5 1.89 - -
K-M(6000) 4 1.81 - -
AHC(7500) 5 1.66 - -
K-M(6000) 5 1.66 2.18 3.76
K-M(7500) 5 1.47 1.78 3.19




Non-Contrastive Self-Supervised Learning of Utterance-Level Speech Representations

« the DINO embedding may include attributes that are consistent within the utterance, such as speaker
information, accent/language, emaotion, and age.

Table 1: Comparison between DINO, momentum contrast
(MoCo), and x-vector embeddings for speaker verification. The
results are on the original VoxCelebl test with equal error rate
(EER)(%) and MinDCF with Pr=0.0{. The PLDA back-end
was frained with VoxCelebl dev where its data size is 1/7 of

VoxCeleb2 dev.
Cosine scoring PLDA
EER(%) MinDCF EER(%) MinDCF
DINO 4.83 0.463 2.38 0.289
MoCo [[1&] 7.3 - - -
x-vector 1.94 0.207 1.88 0.189
* Ite ratlve CI USterl ng Stage Table 2: Speaker verification results over 3 different trial lists with progressing/different systems over the three stages. The numbers

. trained a new | arger model. ResNet34 x-vector model. in from [I8l] seems rounded to the nearest tenth. Pseudo labels for robust training were generated from ResNet34 (iter3).
a supervised way with the AAM loss based on pseudo

speaker labels generated using the initial DINO model. . gori s : EER (%) with cosine scoring
P g 9 Stage Algorithm/Loss Model voxcelebl test o | VoxSRC-21 val | VoxSRC-21 rest
Iniial model traming DINO LResNet34 4.83 13.96
.. (self-supervised learning) MoCo ECAPA [18] 7.3 -
* robust training stage ResNet34 (iter ) 256 559
. ; iter? 3
« used a new larger model, Res2Net50 with pseudo labels . . AAM loss ResNet34 (iter?) 213 735
. Iterative clustering (margin=0.3) ResNet34 (iter3) 2.13 6.97
generated from the ResNet34. After the first 30 epochs of gm=u. ResNet34 (iterd) 314 618
training, the post pooling layers of the model were fine- ECAPA (iter7) [18] 21 - -
tuned with a larger margin, 0.5, in the AAM loss. Robust training AAM loss 2 1.89 650 6.88
9 9 + larg-margin fine-tuning | (margin=0.5) Res2Net50 1.91 6.32 6.64




Non-Contrastive Self-Supervised Learning of Utterance-Level Speech Representations

« Emotion recognition

20 20
® neu
15 : 15 D
10 - i 10 ) - n
o TR Table 3: Emaotion classification results on three different
. W . . . :
g i "‘*if‘:j{.> g 2 dataset. All numbers in this table are micro-fl (%) scores
F S S 3
z;i 0 “3:;,‘ LBy g 0 IEMOCAP | Crema-D | MSP-Podcast
.l B £ x-vector [23] | 36.11 75.65 5358
DINO 6l.87 79.21 56.98
-10 -10
«15 -15
2o -15 -0 -5 0 5 10 15 20 200 -15 -10 -5 0 5 10 15 20
tsne-pca-ane tsne-pca-one

Figure 2: Analyvsis of DINQ embedding space for IEMOCAFP
using t-SNE plots. Each color represents one speaker in the top
plot and one emotion in the bottom plot.



Reducing Domain mismatch in Self-supervised speech pre-training

* Propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training.

» let the input speech sequence X = [x1, X2, ..., XT0], where xt is the log Mel-filterbank feature vector at time t.
« X s sent to the feature encoder ® to obtain the encoded representations E = ®(X). Get E = [el, e2, ..., eT].
« The masking is done over sets of frames or blocks b1, b2, ..., bK and accommodates overlap between blocks. Here K

is the number of masked blocks in a randomly masked encoded sequence “E.
« The block bk = [ik, c], where ik is the starting index of the masked block and c is the corresponding right context size.

« For each encoded feature frame et € E, the scorer emits probabilities p(vt =1 | E); | € L of the frame belonging to
a particular label.

St = mftxp('t.lt =1|E)

sample beginning frames with probability proportional to the scores of each frame.



Reducing Domain mismatch in Self-supervised speech pre-training

Pretraining (PT): Libri-light (LL-60k) dataset
Finetuning (FT): 1) 100hrs of Librispeech (LS-100). 2) 100 hours of AMI and 3) speechstew (5k hours)
Evaluation: ATM performance on AMI using IHM-eval and SDM-eval.

B Baseline W ATM Table 2: Performance comparison of different MSM architec-

* Masking percentages
1463 W Bassline W ATM tures with and without applying ATM on all evaluation sets on

® Random-IHM * ATM-IHM @ Random-test-other * ATM-test-other 34

= T Librispeech.
20 12 z §
< 14 B E 32 3224
z e 1238 o PT-LL, FT-LS100
— - -] . o ap Model
E % ﬁ 13 1 E bo.ast dev  dev-other test test-other
i 7 " I _ # 28 w2v-BERTL 378 886 385 932
< < . . o 2734 +ATM 371 897 389 892
g E w2u2-ci-L HuBERT-cfL w2wBERT-L wivZci-l HuBERTcfr-l w2vw-BERT-L w2v2-cfr-XL 25 4.7 26 4.9
- 2 +ATM 24 4.6 25 5.0
Figure 2: Performance comparison of different MSM architec- HuBERT-cfr-XL 2.5 47 2.6 5.0
tures with and without applying ATM on IHM-eval and SDM-eval +ATM 25 46 25 >0
in AMI. All these models are FT using AMI. Here “cfr” refers to W2v-BERT-XL 2.4 4.4 23 4.6
Masking % . +ATM 2.3 4.4 24 4.7
conformer.
Table 4: Comparison with state-of-the-art results on SpeechStew.
Table 3: %WER obtained by FT with AMI using w2v-BERT-XL The FT is done on SpeechStew and the results are evaluated
model using baseline and ATM. Evaluation is done on AMI test using Kaldi scoring to match published results. Note that the
e hichlioht th v . hed conditi model has never seen any CHIME-6 data, and we use it as an
sets to highlight the effect on mismatched condition. example for zero-shot learning mode on how the model performs
on chime-6 wihout seeing any of its training data.
MSM arch. [HM-eval SDM-eval
Model AMI .
—— CHIME-6
w2v2-cfr-XL 10.4 25.7 M SDM
+ATM 10.0 245
Speechstew [10] 9.0 21.7 57.2
w2v-BERT-XL 10.1 25.1 w2v2-cf-XL[10] 9.6 238 564
+ATM 9.5 23.7 w2v-BERT-XL 9.2 21.5 55.5

+ ATM 9.0 21.0 543




Using Data Augmentation and Consistency Regularization to Improve Semi-supervised Speech
Recognition

» Consistency Regularization (CR)

« the decision boundary between classes lies in low density regions

« when a realistic perturbation is applied to a model’s input then its prediction should not diverge.
« The success of CR is therefore related to the quality and diversity of input perturbations.

L=— Y logP(Yi|Xi,0) +w Y D(F(X.),F(X.))
(XY ey Xu€Dyr

« E2E ASR model

» Conformer encoder Fe encodes at time t, each acoustic feature xt into a hidden representation ht.

« The prediction network Fp maps a output token into another hidden representation gi.

» The joint network Fj fuses information from both Fe and Fp to compute the posterior probability of next token or blank.

« prediction network tends to produce spiky posteriors and augmentation of input features, such as time warping, can cause these
posteriors to spike at different positions in the posterior lattice.

*  Proposed Approach
Yu = argmax log P(Y, |_{_u_ ) weakly augmented version Xu
¥,
L=— ) logP(Yi|X;.0) —w log P(Yu|Xu.0)  strongly augmented version X,
X,;.Y; Xu

» errors in predictions can get reinforced due to enforced consistency

f}:_ = nl’,i':__] +(1 —a)d Yu = m'f_g,j]_nn_:-c log P{}H_{_u.l’}']



Using Data Augmentation and Consistency Regularization to Improve Semi-supervised Speech
Recognition

« Data Augmentation

Pitch shift, Background Noise, Reverberations, Time frequency masking, Input Mixup

!,-J

Pretraining Stage:

. Sample Tw ~ Aw

Compute frame level pseudo labels at time ¢ for feature
XNopas B, =arpgmax F*(Ty (X))

3. Sample k different augmentations Ty, ..., Ty ~ Ags.

!Ji

10.

Fori = 1...k, apply T: such that,

. X, if pi < qi ~ 070, 1)
(X)) =
Ti(X) {'}E{X}._ otherwise
Compose strong augmentation Xu=Ti oo, Te(Xu)
Use cross-entropy loss and, frame level targets Ei . and
Ey ¢ in (3), to pretrain the encoder by minimizing the
sum of supervised and consistency loss.

EZE Stage:

. Apply Step 1. above to get weakly augmented feature

Xu.
Using X. perform beam search at the output of F7 1o
find the best pseudo label sequence Y,

Apply Step 3. to Step 5. above to getstrongly augmented
feamre X,
Use E2E transducer loss and, sequence labels ¥} and f’u

in (3}, to minimize the sum of supervised and consis-
tency loss.

Table 1: Model architecture and setup

Feature representation

3 * 64 dimensional
LFBE Features

Label representation

4000 Word Pieces
(Plus Blank Symbol)

Feature Embedding

CNN:

Layers = 2, Kernel = 3x3,
Stride Layer 1=2

Stride Layer2 = 1

Conformer Block :
Layer = 14, Kernel = 15,

Encoder architecture Attention Heads =8,
Encoder Dim = 512,
FeedForward Dim = 1024
LSTM:

Decoder architecture Unidirectional,
Layers = 2, Units = 1024

Labeled data 2000 hours
Unlabeled data ~ 100000 hours

Table 2: WER redm.fionﬁ)rlt'b'pmrmim'd mmﬁefslan 100000 hours of
wilabeled audio and 2000 howrs of labeled audio. Compared to base-
line negarive WERR means degradation in performance and Positive

WERR mieans improve ment.

self-labeling: first pretrained using cross-entropy training
followed by end-to-end training using transducer loss on
labeled data.

Table 3: WER reduction for models E2E {trransdicer loss) trained on
100000 howrs of wnlabeled audio and 2000 howrs of labeled andio.
Transforms applied in raining include: 1.) No Augmentation (NA); 2.)
Spec Augment (SA); 3.) Randonily Combined Augmentation (RA). Were
applicable only SA was applied as weak augmentation. Random-MA
applies model averaging. All the models were CE pretrained, except
those indicated by (NP).

Method Labeled L;ﬂ::::ﬂ . Test E.u_n: Words
Aug Ang. WERR( %) | WERR(% )
Self-labeling SA - [TXT1] 0.00
Supervised (NF) SA - -28.27 46.90
Supervised SA SA -7.22 -19. 86
Vam lla CR SA SA 411 0.77
Random CE SA A B53 526
Random-MA CR SA Y 916 12,32

Table 4: Comparing the difference in performance due to different
distance measures in CR: 1) mransducer loss computed from Pseudo

Method Labeled U:ﬁx'g“d Test

Aug. Aug. WERR(%)
Supervised Baseline SA - 0.00
Vanilla CR S5A SA 6.53
Random CR S5A RA 8.60

Labels (PL), 2.) L2 distance and 3.) Cosine distance.

Method Transducer (PL) | MSE | Cosine
Test (WERR %) 0.0 =629 | -2 .80
Rare Words (WERR %) | 0.0 =580 [ =503




SPLICEOUT: A Simple and Efficient Audio Augmentation Method

« Audio Augmentations
« Warping-based Mixing-based Masking-based Noise-based

Step 1: ?elfect Time Intfa-ryfl.s.'to Mask Time Masking

= “
.
R [

Input Spectrogram wnth T tlmesteps
Parameters: N for number of masks

T for maximum width of a mask Step 2 : Splice the masked intervals SPLCEQUT

Step 3 : Join the parts

Figure 1: Illustration of SPLICEOUT and time masking.

I~ Time Improvement . Memory Improvements
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= 6 QT:*T_ — * . &) 12 3 + Y 1
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— 10 | .
24r 1 £

L 3L | | = E ] | | b
E 2 4 8 16 32 64 3 2 4 8 16 32 64

—e— Time-Masking —— SPLICEOUT |

Figure 2: Comparison of running time and memory requirements during training using Time-Masking
and SPLICEOUT augmentations, with varying number of masks.



SPLICEOUT: A Simple and Efficient Audio Augmentation Method

 ASR: LibriSpeech « ASR for Multiple Languages
Table 2: WERs on LibriSpeech test sets, using TM, FM and SPLICEOUT (SO), with N = 2. Augmentation | Swedish  Turkish ~ Kyrgyz  Ukrainian ~ Tatar | Welsh
™ + FM 10 hrs 22hrs 22 hrs 25hrs 28 hrs | 96 hrs

Augmentation test-clean_ test-other + TM [14, 54] 33.2 6.7 373 146 363 | 154
™ 7010 2185001 + SPLICEOUT 32.1 6.5  36.2 140 355 | 14.8
SO 7.5+0.18 21.4+0.31 i i i i i i
FM + T™M 7.2+017  18.3%0.28
FM + SO 7.2+0.18 18.2+0.29
TW +FM + TM [14,54] 7.0+016  18.1+0.28 ° i | ibri-
TW + FM + SO 7.1x017  17.9+x0.20 SpeeCh Tl’anS|atI0n. lerl TranS
TW+FM+TM+50 7.1+018 17.740.29 Table 6: Evaluating TM and SPLICEOUT using development and test set BLEU scores for the

Libri-Trans task. Higher is better.
Table 3: Effect of increasing the number of masks, N, in Time-Masking and SPLICEOUT (SO)

augmentations, on WERs of LibriSpeech test sets. Augmentation Dev BLEU Test BLEU
N Method test-clean test-other TW + FM + TM [14, 58] 18.43 17.18
2 T™ 7 6+0.19 21.840.31 TW + FM + SPLICEOUT 18.57 17.15

4 T™M 7.3+0.18  20.4+0.30

SO 7.0+0.16 20.3+0.31

M 68:0n 1995w « Sound Classification: ESC-50 and UrbanSound8K

SO 6.8+0.18 19.0+0.30 Table 7: Evaluating TM and SPLICEOUT on two sound classification tasks, with the standard
augmentation combinations [15, 16]. Higher is better.

o ) ) : ) Augmentation |  Accuracy Fl micro mAP
Table 4: WERs on LibriSpeech test sets comparing Semantic-Mask and Semantic-Splice.
Dataset: ESC-50
Method test-clean test-other MX +FM +TM | 90.40+0.02  89.42+0.02  94.98+0.01
S ic-Mask [55] 9.9 o MX + FM + SO | 90.95+0.02  89.96+0.02  95.17+0.01
emantic-Mas 9.
. . : Dataset: UrbanSound8k
Semantic-Splice (Ours) 8.8 21.5 ataset: rbansoun

MX+FM+TM | 86.39+0.04 86.32+0.0¢ 93.04+0.03
MX+FM+SO | 86.67+0.04 86.31+0.0¢ 93.04+0.03




SPLICEOUT: A Simple and Efficient Audio Augmentation Method

Music Classification: GTZAN

Table 8: Evaluating TM and SPLICEOUT, with and without FM, on GTZAN Music Genre Classifica-
tion. SPLICEOQUT is complementary to TM. Higher is better.

Representation Learning

Higher is better.

Augmentation | Accuracy
MX + TM 90.7+0.03
MX + SO 90.7+0.03
MX + FM + TM [15] 91.3+0.03
MX + FM + SO 91.4+0.03

MX + FM + TM + SO | 92.8+0.03

J\r
Lo =— Z log

(V]
Table 9: Comparing classification accuracies using SPLICEOUT and TM in semi-supervised (with
different amounts of labeled data) and self-supervised settings on the Speech Commands Dataset.

exp (sim (z;,2;) /7)

2N :
> k=1 L) €xp (sim (z;, 2, ) /7)

Labeled Data Percentage

Type Method 100%  20% 10% 1%
Supervised Cross Entropy | 949 86.4 684 286
Semi-Supervised SupCon 96.0 87.9 82.1 26.6
CLAR (FD + TM) [14, 30] 97.2 947 91.7 728
CLAR (FD + SPLICEOUT) 974 956 926 T71.2
Self-Supervised ~ SimCLR (FD + TM) [ 14, 30] 89.0
SimCLR (FD + SPLICEOUT) 88.9

Time-Averaged Mean Time-Averaged Variance
= =
Q I p———a Q
= 1L R | = 1
5 101 = . 5 107 ././r"i"“ |
é 100 'ﬁ 1 é 100 £ ././0/"/' E
o 1071 = - = o -1 -
X 214 8 12 16 =TSR 12 16

Number of Masks Number of Masks

‘ = TM (Zero) —+—TM (Mean) —e— SPLICEOUT ‘

Figure 3: Comparison of % distortion in the Time-Averaged Statistics of different augmentation
methods, compared to the unaltered input, with varying number of masks.

Table 10: Perceptual speech metrics, both absolute and relative, comparing the quality of speech
modified by TM (Zero), TM(Mean), and SPLICEOUT transformations. Higher is better.

Absolute Relative
Augmentation SRMR Wide-Band PESQ Narrow-Band PESQ
TM (Zero) 9.24 3.07 3.35
TM (Mean) 9.14 3.05 3.46
SPLICEQUT 9.24 3.33 3.59




Supervision-Guided Codebooks for Masked Prediction in Speech Pre-training

« SSL: HuBert

« Self-Training: a teacher model is trained on the labeled data and then the unlabeled set is labeled with this
initial model (a.k.a. pseudo-labeling). Finally, a new student model is trained on the combined labeled and
pseudo-labeled data.

« Combination of SSL and Self-Training: first pre-trains a model on dataset unlabeled data, fine-tunes it on
dataset labeled data. Then this fine-tuned model is used as the initial teacher model for pseudo-labeling.

Algorithm 1 Pipeline of our methods

Input: Labeled dataset 5, Unlabeled dataset U, i ( ) ( i )
a hybrid(PBERT) or an end-to-end one (CTC clustering
1 8 Tnill.-.l d sU P‘l:l._"r'lf":'l:d I:II{Hji:l ‘:1' .!-I'_I on dii[ii!":'l:[ '-‘.':' . et "1""’ = Table 1: Results and comparisons in base model setting. All
'|I -‘!f.l madels only utilize 1000 labeled data, and 860 unlabeled data.
2. Generate pseudo-labeled dataset M (L) with M. -:_""’d_ — LM bow-clo_ toat otter
= 1 :l'r:’nsﬁma cTC N 8 203
3. Generate frame-level alignments or K-means clusters : , dgrum 5.0 16.8
. . R LF-MMI { Hy brid) 4-gram 4.6 15.0
A(U) and A(S) with M. Sefsupervised Baselines N I
wav2vee 2.0 [5] h "m"“m s 2h
5 = = ] 2
4. Pre-tram a masked-predichon model M on dataset S ——— Nane 73 6.2
r ¥ 71 A-gram 3.9 95
-1{ i :] L -1{3'-_,- :|_ HuBERT iter 2 [7] :;J:m ‘;3 l;.:]
- . ] ) Nene 57 123
5. (Optional) set M = M, goto 2. + el s dprum T Our Methods — T
) P ; ; ; Random-codebook [33] + el bias :;_:cm ‘2‘; l‘j;] PBERT 4-gram EN 77
6. Fine-tune the pre-trained model M on 5 or M(L/JU 5. TS il T . Nore T
. [ Self<raining Baseld e g N 4.7 0.7
7. (Optional) Set M = M’, generate pseudo-labeled SelF Training (ST TT6T o LS + B o cgam 3113
v - IPL [17] 4-gram + Trans., 5.6 i o g
dataset M {f, :]_ go o 3. N«:islysaudmﬂlﬁ-] 5 B 6 + self-training r;:‘m ;f _ﬁ
self-fraining {Ours) :;amrmm i‘i l;: CTC clustering + rel bias :;:cm 2; lTL:
+ Ind iteration :;jrm ii 1 sl:] Ground-truth phones + rel bias :;rm 5.5 IO




Supervision-Guided Codebooks for Masked Prediction in Speech Pre-training

« Non-ASR Task Transfer

Table 2: Equal error rates { EERs ) on VoxCeleb I speaker veri-
Jication test set.

‘ EER (%)
Model Vox1-0  Vox1-E  Vox1-H
FBank 1.01 1.24 7.32
ASR Encoder | 1139 1256 2434
wav2vec 20 | 0973 0933 1831
HuBERT 0.84 0879 1726
PBERT 0867 0918 1776

“ASR encoder” means we pre-train a CTC model with labeled train-960, and feed the ASR encoder outputs to the downstream model to
obtain speaker embeddings.



Impairment Representation Learning for Speech Quality Assessment

» proposed an impairment representation learning approach to pre-train the network on a large amount of
simulated data without MOS annotation. Then further fine-tune the pre-trained model for the MOS prediction

task on annotated data. pp—
O L —
Y= §_
o | P §[®| e
. prerneenaaes ) E ' . I . A (@] o
[ean Spoocnlpfosieete | S ERRE e, H i i j 1> N nputs =1 e T R Outhuts
: ' OO NN | : ‘gl k : |
Ve 1 W8 rE | ! (st Al E S| 8
Dat Impaired | ! @ i Embeddings : N — i N e T ; = é 2
[S)L::CS; é [ 3 I Predicted PESQ gl Sgé_‘_ - _ M E § 73]
NG 3 eem s le ] - ' . I
| Predicted STO! Speech Bl il n |« O > ) . ]
Impaiments T S il e S st = ; Figure 3: The structure of GConv2D block.
————— Pretraining """ i ___________________________________ Ebi b2l '
Fine-tuning ... ¥........ . ﬁ i = : TR g 0 Table 1: Hyper-parameters of the proposed neural network.
2 '; p——-i 5 PAY 4—:' Ho
|8 - ‘M SN BRI\ SR AN . o Layer CNN RNN FC
MQOS annotated E ' | » Predicted MOS [ ' ' H s . . .
Dataset 18 3 redicte ; I I N N N Channel Kernel Stride Units Units
L8 : Dl e N PN N 1st :
........... ! N PN _ N GConv2d™* 16 (3,3) (1,1)
""""""""" Impairment §§S31 \\\ : / > GConv2d?™ 32 (3,3) (L,2)
Figure 2: The proposed two-stage system with pre-training for s : L GConv2d?®m 64 (3,5) (L,2)
impa-irr:nem‘ representation learning and fine-tuning for MOS Impaired Speech ~ Embeddings Embedding Space GConv2d*th 128 (3,7) (1,3)
prediction. GConv2d®™ | 256  (3,3) (1,1)
Figure 1: The proposed impairment representation learning. GConv2d®t" 512 (3,1) (1,1)
H BiGRU!*" 128
* Pre-training BiGRUZ o6
1 1,1 2,1 1 171 172 BiGRU®" 64
Tn = =(||Fo(SiI,) — Fo(SiI)||2+ Tn = z(||[Fo(Snln) — Fo(Snln)||2+ :
" 2(” ( " 'n,) ( " 'n,)” 2 5 1 5 5 ﬁﬂ” == ﬁemb + ‘E'Pesq + Estoi Dcnsc:ﬂd 96
|| Fo(SnIz) = Fo(SaL3)|l2) 1F6 (Sun) = Fo(Snln)llz) Dense r

Lomp=Y x X + (1 =Y)*marimum(l — X,0) X = [z1,...,zN,7),....,2x] Y = [l:...iliﬂi...iﬂ]u

* Fine-tuning ;
Lyos = MSE(05% M +0.5%r1, M) Mfosion = Y _ oy x M]

2

rl is the predicted MOS by the first trained model



Impairment Representation Learning for Speech Quality Assessment

Pre-training dataset: LibriSpeech and ST Mandarin
Fine-tuning dataset. Tencent Corpus, PSTN Corpus and NISQA Corpus.

‘None’ is the baseline system without pre-training.

‘ICC’ is the baseline pre-training method, a dense layer is added on the top of embedding layer to classify 4 impairment categories

(noise, reverberation, device coloration and audio compression).
‘CL’ is the proposed pre-training method of Contrastive Learning (CL).
‘CL+OSQP’ is the proposed pre-training method with contrastive learning and Objective Speech Quality Prediction (OSQP)

PT-Method | FT-Size ‘ Tencent PSTN All
None 0914 0.731 0.822
ICC 1K 0.664 0.680 0.672
CL 0.614 0644 0.629
CL+OSQP 0.475 0.581 0.528
None 0517 0.637 0.577
ICC 5K 0.526 0614 0.570
CL 0.466 0610 0538
CL+0OSQP 0.392 0.557 0474
None 0.341 0.519 0.430
ICC 120K 0.360 0.514 0437
CL 0.334 0514 0424
CL+0OSQP 0.317 0.512 0414

Table 2: RMSE of MOS prediction for different pre-training
methods and different size of annotated fine-tuning dataset.

ICC CL CL+0SQP
P B
‘?' & / 8 “
pr-3
-
iy \

*Noisel_10dB «Noisel 0dB «Reverb_0.9s «LPF_3600Hz -Opus_
*Noise2_10dB «Noise2 0dB «Reverb 0.3s «HPF_1000Hz +«Opus_

Figure 4: A visualization of learned representations for ¢
pre-training methods.

Table 3: RMSE of MOS prediction with self-teaching loss and
model fusion.

PT-Method | FT-Size | DP |ST | Tencent PSTN Al
CL+OSQP | 120K |10sz| 0 | 0317 0512 0414
CL+OSQP | 120K [10sz| 1 | 0309 0509 0.409
CL+OSQP | 120K |16sr| 0 | 0326 0518 0422
CL+OSQP | 120K |1l6sr| 1 | 0324 0512 0418

Fusion | 0293 0503 0.398

Table 4: Results on ConferencingSpeech 2022 challenge.

System | PLCC RMSE RMSE-Map
Baselinel | 0.530 0.768 0.497
Fusion 0.778 0.460 0.337




Label-Efficient Self-Supervised Speaker Verification With Information Maximization and

Contrastive Learning

=)

At g

Baich of uniabalad
uttemnces

-

Figure 1: Diagram of our self-supervised training framework.
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Barlow Twins

The redundancy reduction term, by pushing all coefficients off-
diagonal to be 0, decorrelates the different vector components
and thus reduces the redundancy between them.

LparlowTwins = Z (1-[C(Z.2)] z.z.]z

+A3 > [c(zz)]], @

i e

w2
'+ Variance-Invariance-Covariance Regularization
i o2

: Cvicnes = As (Z.Z) + pu ((Z) + v (Z))

: s(Z,7) M o

: +ric(Z)+c(Z)) (3)
@) where A, i and ¥ are hyper-parameters to scale the variance,
‘ imariance and covariance terms. s, v and ¢ represent the in-

variance, variance and covariance components, respectively.

.
$(2.2) =53 = -4l 5)
i=1
| L

v(Z) = EZII]}L‘!{ ({]. 1 — f\-’iu-{zjj} (4)

i=1
c(Z) = %Z[F{Eﬂf.j (6)
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Label-Efficient Self-Supervised Speaker Verification With Information Maximization and
Contrastive Learning

Datasets: Voxcelebl

Exploring the complementarity of these methods

Encoder: Thin-ResNet34

IE1I:-n|:-r.|:.|:| = 'E"n"ll.'.'nc_g {Y-Yr] + Elnfg[‘;l___'E IIEE"] [?}
Egnmp = lIl:I|'.\|.I:'1:hlf'-.'l.'.'II [YYr] T+ E"n"ll’.‘ﬂﬂg (EE":I [R}

Loeg = Lintaice (Y, Y') + a Cvicreg (Y. Y') (9
i, = Cignce (Z,2') + a Cviche (2, 2) (10)

Table 1: The performance of owr self-supervised SV system
when trained with different data augmentation strategies.

Method EER minDCF
Mo sugmentation 29.87  0.BE33
Musan 21.22 (.H388
RIR 2228  0.83525
Musan + RIR 11.14  0.6843

Table 2: The impact of different scaling foctors for VICReg loss
componenis: A (Invariance), p (Variance) and v ( Covariance .

A b EER

minDCF

1 1 0 24.00
1 05 01 1571
1 1 0. 1114
1 1 0.1 1187

0.9964
0.8554
0.6843
0.7101

Table 3: Effect of projecior dimensionality (number of hidden

and output units) on the peformance of our self-supervised SV

SVEIE.

Architecture EER minDCF
Noprojector 1496  0.93569
512 1134 0.7826
1024 10.77  0.7208
2048 11.14  0.6843

hypothesize that the covariance mechanism benefits from
a larger dimensionality to spread the information more

efficiently.

Table 4: Self-supervised SV resulis on VoxCeleh I test set.

- * Sell-supesvised (ine-iuned)
Method Loss EER minDCF . s mmmﬂ
NPC [Z1] Cross-entropy 1554 08700 =
SimCLR[6] InfoNCE 9.87 0.6760 E’
w
LingancE 1042 0.6276 w®
Ours 'Eﬂ-nrlow'.['wins 13.46 0.8473 T | T -\;_'_'_‘—'—-—-—.:__———:
Lvicheg 9.25 0.6432 o b, . }
1
.E._.z._..mp 1314 06950 : 4 ;ernint?ge of la.h-zn!aled data o oo
Ours Locmp 847 0.6400
(Section .E:f;g 9.09 0.6804 Figure 2: Results on SV with different percentage of labeled
Eig 10.38 06013 data used during training.




