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Abstract

We introduce an online adaptive training approach based on AdaMax to improve
speech recognition in time-variant conditions. AdaMax, a variant of Adam based
on the infinity norm, is a first-order gradient-based optimization method. Due to
its capability of adjusting the learning rate based on data characteristics, it is
suited to learn time-variant process, e.g., speech data with dynamically changed
noise conditions. We apply this property to train and adapt deep neural network
(DNN) acoustic models for speech recognition. The experiments were conducted
on Auroa4, where the time-variation is simulated by injecting different types of
noise into the training data. The results show that AdaMax can adapt to a new
noise condition more quickly than the conventional SGD algorithm.
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1 Introduction
Stochastic gradient-based optimization is of core practical importance in machine

learning. Among various optimization algorithms, gradient descent (GD) is a par-

ticulary interesting due to its simplicity and efficiency. For large scale optimization

problems, stochastic gradient descent (SGD) is often used instead of GD, attributed

to its quick convergence. Many studies have demonstrated that SGD is very effi-

cient and effective on a broad range of learning tasks, e.g., in training deep neural

networks [1].

To ensure convergence, the learning rate of SGD needs to be reduced gradually to

zero when the training iterates on the data and approach to a stationary point. It

has been found that a simple geometric learning rate reduction is sufficient to ob-

tain good performance, although many alternatives exist, for example the NewBob

approach [2].

This learning rate reduction, however, encounters problems with online learning.

For online learning, we mean the data will be fed to the training algorithm only

once, so there will be no chance to iterate over the entire database. If the training

data is time-invariant, e.g., the distribution of the training data keeps no change

during the training, then it is still reasonable to reduce the learning rate according

to the amount of data that has been processed. It can be proved that this online

learning rate reduction approach converges to a stationary point.

If the training data is time-variant, the reduced learning rate will cause disasters,

as there will be no hope to get out of the local minimum that have been learned

based on past data. This means that new data can not be learned anymore, due

to the infinitesimal learning rate. A possible solution is to use second-order infor-

mation, so that the learning rate is not reduced gradually, but is determined by
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the present Hessian. The second-order methods, however, are generally very expen-

sive, which makes it infeasible to apply to large-scale learning tasks, for example

DNN-based acoustic model training in speech recognition.

1.1 Adam for online training

Recently, an Adam approach was proposed to approximate second-order properties

but keep the computation as the same order as SGD [3]. The name Adam comes

from adaptive moment estimation, and the basic idea is to combine advantages of

two popular methods: AdaGrad [4], which shows a good performance with sparse

gradients, and RMSProp [5], which works well in on-line training and non-stationary

data. More specifically, the method can compute individual adaptive learning rates

for different parameters, by estimating the first- and second-order moments of the

gradients. One advantage of Adam is that the stepsizes are approximately bounded

by the stepsize hyperparameter, which makes the learning stable. Moreover, the

effective stepsize is adjusted automatically, leading to automatic annealing at sta-

tionary points, and automatic resurgence with new data. This enables Adam ami-

able to online learning where the condition (hence the data distribution) changes

dynamically: it can get out of local minima learned from old data and move to new

minima that are suitable for new data. The Adam algorithm is shown as follows,

reproduced from [3].

Table 1 Algorithm of Adam.

Algorithm 1: g2t indicates the elementwise square gt � gt.
Good default settings for the tested machine learning problems are:
α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.
All operations on vectors are element-wise.
With βt1 and βt2, we denote β1 and β2 to the power t.
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t ← 0 (Initialize timestep)
while θt not converged do
t ← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 · mt−1 + (1 - β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1 - β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 - α ·/(

√
v̂t + ε)(Update parameters)

end while
return θt (Resulting parameters)

An variant of Adam is to replace the second-order moment v0 with the infinite-

order moment. The algorithm is called AdaMax and shown as follows. More details

can be found in [3].

2 Related work

Adam is related to RMSProp [5, 6] and AdaGrad [4]. The update formula of RM-

sProp with momentum is [6]:
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Table 2 Algorithm of Adamax.

Algorithm 2: Good default settings for the tested machine learning problems are
α = 0.002, β1 = 0.9, β2 = 0.999.
With βt1 , we denote β1 to the power t.
Here, (α/(1− βt1)) is the learning rate with the bias-correction term for the first moment.
All operations on vectors are element-wise.
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
u0 ← 0 (Initialize the exponentially weighted infinity norm)
t ← 0 (Initialize timestep)
while θt not converged do
t ← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 · mt−1 + (1 - β1) · gt (Update biased first moment estimate)
ut ← max(β2 · ut−1,|gt|) (Update exponentially weighted infinity norm)
θt ← θt−1 - (α/(1-βt1))·mt/ut(Update parameters)
end while
return θt (Resulting parameters)

gt = ∇θft(θt−1) (1)

mt = β1mt−1 + (1− β1) (2)

vt = β2vt−1 + (1− β2)g2t (3)

∆t = β3∆t−1 − α
gt√

vt −m2
t + η

(4)

θt = θt−1 + ∆t. (5)

It can be seen that RMSProp and Adam share the same idea to adjust the learning

rate by a running averaged gradient, so they are both suitable for online training.

The difference is that they use different ways to rescale the learning rate. More

importantly, RMSProp lacks the bias-correction, which leads to unstable training

in particular with a small value β2.

AdaGrad is another popular approach for learning rate adjustment. The update

formulation of AdaGrad is

θt+1 = θt − α · gt/

√√√√ t∑
i=1

g2t .

This corresponds to a special Adam where β1 = 0, infinitesimal (1 − β2) and a

replacement of α by an annealed version αt = α · t−1/2. More specifically,

θt − α · t−1/2 · m̂t/
√

lim
β2→1

v̂t = θt − α · t−1/2 · gt/

√√√√t−1 ·
t∑
i=1

g2t (6)

= θt −
α√∑t
i=1 g

2
t

gt. (7)

Note that this direct correspondence between Adam and AdaGrad does not hold

when removing the bias-correction terms; A step further, without the bias correc-
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tion, like in RMSProp, a β2 infinitely close to 1 would lead to infinitely large bias,

and infinitely large parameter updates.

Other stochastic optimization methods includes vSGD [7], AdaDelta [8] and the

natural Newton method from Roux and Fitzgibbon [9]. All these methods set step-

sizes by estimating the second-order statistics from first-order information. Sum-of-

Functions Optimizer (SFO) [10] is a quasi-Newton method based on minibatches,

but it requires large memory. Like natural gradient descent (NGD) [11], Adam

employs a preconditioner that adapts to the geometry of the data, since vt is an

approximation to the diagonal elements of the Fisher information matrix [12]. How-

ever, Adam’s preconditioner (like AdaGrad’s) is more conservative in its adaption

than vanilla NGD.

3 Online learning for ASR
We focus on online training with time-invariant data. In speech recognition, the

acoustic environment may change significantly due to different background noise.

Model adaptation is often used to deal with the changed acoustic conditions, for

example MAP or MLLR. However, with DNN-based acoustic models, adaptation

is not simple due to the compact structure. Particularly, the change on acoustic

conditions may be unnoticed: the background noise may change gradually. This

requires an online learning algorithm that can learn the DNN model sequentially

with new available data.

The conventional SGD method does not meet this request well, since it uses

an annealed learning rate to ensure convergence. Once the learning rate has been

shrunk to a small value, it is hard to update the DNN model any more. One may

think to enlarge the learning rate if new data is available, but this is not feasible

because we often do not know whether the new data is ’the same as’ or ’different

from’ the past data, and therefore do not know if we should enlarge or shrink the

learning rate. We have to seek a way that can change the learning rate automatically,

for example, the Adam algorithm.

The online training task that we focus involves two characteristics: (1) all the

data are provided sequentially and then are thrown away; (2) the background noise

(so the data distribution) is changed without notice. We simulate the time-variant

condition by copying the clean data and injecting noise to simulate a particular

acoustic condition. Note that we shuffle the data before the copy to ensure sufficient

randomness.

4 Experiment
4.1 Databases

The experiments are conducted on the Aurora4 database. The training set involves

15 hours of clean speech (7138 utterances), and the test dataset involves four subsets,

each in a particular noise condition (clean, Airport, Babble, Car). Each subsect

contains XXX utterances. The signal-to-noise level ranges from xx db to xxdb. To

produce noise-corrupted training data, we use the noise samples from the DEMAND

noise corpus[1]. The random noise injection approach in [13] is adopted in this study.

[1]http://xxx
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4.2 Experimental settings

We used the Kaldi toolkit to conduct the training and evaluation, and largely fol-

lowed the WSJ s5 GPU recipe. Specifically, The first step was to establish a GMM

baseline. The feature was 39-dimensional MFCCs, including 13 static components

plus the first- and second-order derivatives. The acoustic model was based one

context-dependent phones (tri-phones), clustered by decisions trees. After the clus-

tering, the model consisted of 3390 probability density functions (PDF) and the

number of Gaussian components was 39997. The GMM system was used to pro-

duce phoneme alignments for the training data and provide the prototypes for the

DNN system, including the HMM model that describes the transition characteris-

tics of phoneme models, and the decision tree that describes the sharing scheme of

the tri-phones.

The DNN baseline system was then trained utilizing the phone alignments pro-

duced by the GMM system. The 40-dimensional Fbank feature was adopted and

the cepstral mean normalization (CMN) was employed to eliminate the effect of

channel noise. In order to use dynamic information of speech signals, the left and

right 5 frames was spliced and concatenated with the current frame. A linear dis-

criminant analysis (LDA) transform was used to reduce the feature dimension to

200. The LDA-transformed feature was used as the DNN input.

The DNN architecture involved 4 hidden layers and each layer consisted of 1200

units. The output layer was composed of 6674 units, equal to the total number of

PDFs in the GMM system. The training criterion was set to cross entropy, and

the stochastic gradient descendent (SGD) algorithm was employed to perform op-

timization, with the mini batch size set to 256 frames. This setting is quite close

to the GPU recipe used in Kaldi. We used a NVIDIA G760 GPU unit to perform

matrix manipulation.

4.3 Experimental results

4.3.1 Baseline

The first experiment employs various training algorithms to build the baseline sys-

tem. The trained follows the conventional iterative training recipe, using the clean

training data. The learning rate (or basic learning rate) is reduced following the

Newbob style, as implemented in the Kaldi WSJ s5 recipe.

The results in terms of word error rate (WER) are shown in Table 3. In this table,

only SGD is purely first-order, and all other algorithms use second-order informa-

tion, in different forms. Nestrov and AdaGrad reduces learning rate exponentially,

while AdaDelta and Adamax tune the learning rate according to data. It can be ob-

served that both Adam and AdaMax deliver good performance, especially in noisy

conditions. This means that Adam/AdaMax (and most learning rate adjustmen-

t methods) tends to learn more generalizable models. Interestingly, although only

babble noise is used in noisy training, performance on other noisy conditions are

generally improved, which is consistent to the results reported in [14].

4.3.2 Online learning

Due to the high performance of AdaMax, we focus on this approach and evaluate its

capability in online learning, and compare it with the conventional SGD algorithm.
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Table 3 Baseline performance on four test sets with different training algorithms.

WER/%
Test set initial learning rate Num of iter Clean Airport Babble Car
Baseline(SGD) 0.008 14 6.42 35.38 36.42 15.94
Nestrov 0.008 14 6.25 34.37 36.88 16.22
AdaGrad-P2 0.008 12 6.89 35.85 35.95 15.37
AdaGrad-max 0.008 12 6.42 30.81 31.34 13.63
AdaDelta 0.1 16 6.76 30.98 31.17 14.41
Adam 0.001 15 6.53 32.29 33.09 14.79
AdaMax 0.008 12 6.59 27.30 28.24 13.98

To enable SGD online training, the basic learning rate was fixed to 0.008 (otherwise

the too small learning rate will prohibit learning new data with SGD).

In the simplest configuration, we copy some clean data, and then augment some

copy of noisy data with babble noise injected. The mean and variance of the SNR

are chosen to be xx and xx respectively for the noise injection.

We test two scenarios in this experiment: In test A, copy the clean data 9 times

and then add one copy of babble noisy data; in test B, 5 copies of clean data are

concatenated with 5 copies of babble noisy data. The results are shown in Table 4,

where ‘SGD-nc’ means the model after n copies of clean data have been used in

training, and ‘SGD-nc-mb’ means n copies of clean data and m copies of babble

noisy data have been used.

Table 4 Performance of SGD and AdaMax online training.

Test set Clean Airport babble Car
SGD-9c 6.72 39.17 39.58 18.51
SGD-9c-1b 7.16 21.33 22.11 10.00
AdaMax-9c 7.04 30.18 31.02 14.74
AdaMax-9c-1b 7.56 18.43 19.35 9.58
SGD-5c 7.04 37.43 40.75 17.92
SGD-5c-5b 7.86 19.40 18.30 12.15
SGD-5c-5b-5c 6.78 24.03 24.70 13.61
AdaMax-5c 7.03 32.67 32.84 14.93
AdaMax-5c-5b 7.67 17.08 15.00 8.99
AdaMax-5c-5b-5c 7.41 27.76 31.19 13.42

Note that each copy, no matter clean or the noisy, contains the same number of

utterances (7138 utterances and nearly 15h of speech signals). It can be seen that

AdaMax generally produces much better performance than SGD, especially when

the noise condition transits from one to another. For example, with the transition

from ‘5c’ to ‘5c-5b’, AdaMax adapts the model quickly to the new condition and

produces much lower WER than SGD.

An exception is that when the condition moves back to one that has been seen

already, for example, ‘5c-5b-5c’, AdaMax shows inferior performance than SGD,

even in terms of generalizability. A possible reason is that the two clean data sets

are totally the same, which is not realistic and may lead to some bias; unfortunately,

this bias more benefits SGD. To verify this conjecture, we split the clean dataset

into two parts: ca and cb, and re-run the experiments. The results are shown in

Table 5.

It can be seen that in the condition ‘5c1-5b-5c2’, AdaMax is still worse than

SGD on clean data, but the generalizability on noisy conditions has been recovered.

In the condition ‘5b1-5c-5b2’, AdaMax shows clear better performance than SGD

on noisy data. These results indicate that AdaMax can adjust the model quickly
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Table 5 Performance of online training with SGD and AdaMax.

WER/%
Test set Clean Airport Babble Car
SGD-5c1 8.53 40.00 41.17 20.18
SGD-5c1-5b 8.02 21.08 18.47 12.55
SGD-5c1-5b-5c1 7.35 23.31 23.78 14.60
SGD-5c1-5b-5c2 6.93 24.33 26.16 14.64
AdaMax-5c1 8.04 33.82 31.97 17.73
AdaMax-5c1-5b 7.81 18.28 15.54 9.03
AdaMax-5c1-5b-5c1 7.54 23.86 24.09 13.42
AdaMax-5c1-5b-5c2 7.06 23.84 24.49 12.20
SGD-5b1 9.54 21.78 21.52 11.33
SGD-5b1-5c 7.20 31.65 33.28 16.17
SGD-5b1-5c-5b1 7.71 19.40 19.15 9.73
SGD-5b1-5c-5b2 7.83 21.52 21.88 10.74
AdaMax-5b1 9.20 19.63 18.77 11.04
AdaMax-5b1-5c 7.12 28.77 30.50 13.00
AdaMax-5b1-5c-5b1 8.23 18.07 16.95 10.09
AdaMax-5b1-5c-5b2 8.04 18.91 17.04 10.00

to accommodate a new condition, but tends to forget things quickly as well. In

contrast, SGD does a slower job and remember more past things. This explains

why fedding the same data leads to better performance with SGD: SGD re-uses the

information that learned from the past clean data.

5 Conclusions
We report some empirical studies on online time-invariant DNN training with

AdaMax. We focus on speech recognition in the scenario that the noise condition

changes unnoticeably. The experimental results confirmed that AdaMax outper-

forms SGD in general, especially on time-invariant scenarios. It also suggests that

AadaMax can quickly adapt to new conditions, but tends to forget things quickly

as well.
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