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ABSTRACT

Dropout and DropConnect can be viewed as regularization
methods for deep neural network (DNN) training. In DNN
acoustic modeling, the huge number of speech samples makes
it expensive to sample the neuron mask (Dropout) or the
weight mask (DropConnect) repetitively from a high dimen-
sional distribution. In this paper we investigate the effect of
Gaussian stochastic neurons on DNN acoustic modeling. The
pre-Gaussian stochastic term can be viewed as a variant of
Dropout/DropConnect and the post-Gaussian stochastic term
generalizes the idea of data augmentation into hidden layers.
Gaussian stochastic neurons can give improvement on large
data sets where Dropout tends to be less useful. Under the
low resource condition, its performance is comparable with
Dropout, but with a lower time complexity during fine-tuning.

Index Terms— DNN acoustical model, Dropout, Stochas-
tic neuron

1. INTRODUCTION

Context-depndent deep neural network hidden Markov mod-
els (CD-DNN-HMMs) have shown much better performance
than traditional state-of-the-art GMM-HMM models on auto-
matic speech recognition (ASR) tasks [1, 2]. While DNNs
demonstrate great power on modeling the posterior distribu-
tion of HMM states given speech frames, their non-convex
objective function and large number of parameters make them
hard to optimize. Traditional methods like adding an L2 or
L1 penalty on the network weights can be used for regular-
ization. Dropout training is proposed in [3], where the output
of each hidden unit is randomly set to zero with a pre-defined
probability during forward propagation. Experiments show
that it improves generalization performance on unseen test-
ing data. The authors of [4] proposed to set weights to zero
randomly instead of the activation of hidden unit. This idea
is called DropConnect, which can be viewed as a generaliza-
tion of Dropout. [5, 6] introduced low-rank matrix factoriza-
tion to constrain the parameter matrix in two low dimensional
subspace. Besides regularization, this can further reduce the
number of parameters. This method reduces training time
but does not yield improvements in word error rate (WER).

Though Dropout and DropConnect offer good regularization,
repetitively sampling from a high dimensional Bernoulli dis-
tribution significantly slows down the fine-tuning process. In
DNN acoustic modeling of ASR, the huge number of training
samples further aggravates the problem.

It is well-known that there is a connection between artifi-
cially corrupted training data and regularization. [7] showed
that training with features that have been corrupted by addi-
tive Gaussian noise is equivalent to a form of L2 regulariza-
tion when the noise is low. Stochastic neuron networks [8, 9]
are built by introducing random variations into the network,
either by giving the neurons stochastic transfer functions, or
by giving the connection stochastic weights. Dropout can
therefore be viewed as binary noise which is multiplied af-
ter the neuron non-linearity.

In previous work [10], Dropout training was accelerated
by integrating a Gaussian approximation of its objective func-
tion. In this paper, we explore Gaussian stochastic neurons for
regularizing DNN acoustic model training. Our idea differs
from [10], in that we still do sampling but in a less time con-
suming way. The basic idea is to introduce a pre-activation
and a post-activation Gaussian additive noise during forward
propagation. Additive noise is cheaper in terms of compu-
tation than the multiplication in Dropout. Furthermore, if we
draw one pair (pre and post) of Gaussian samples as noise per-
turbations and share it among all the units in a hidden layer,
the sampling cost will be reduced greatly. We investigate
the effectiveness of Gaussian stochastic neurons in terms of
model regularization and training acceleration. In our exper-
iments, Gaussian stochastic neuron DNNs yield good regu-
larization and they reduce the training time greatly compared
with Dropout. We illustrate the theoretical relation between
Dropout and Gaussian stochastic neurons by referring to pre-
vious work in [10].

2. CD-DNN-HMM TRAINING AND DROPOUT

In the CD-DNN-HMM framework, we train a DNN with
a softmax output layer to classify input speech frames to
context-depedent tied states. In each hidden layer, the DNN
computes the activation of hidden units given the outputs
from the previous layer. When using the sigmoid activation
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function, the outputs of the i-th layer can be computed as
follows:

hi = σ(W ihi−1 + bi), 1 ≤ i ≤ L (1)

where h0 = ot is the observation, W i is the weight matrix
that connects the (i− 1)-th layer and i-th layer, bi is the bias
vector at the i-th layer, and σ(x) = (1 + exp(−x))−1 is the
element-wise sigmoid function. The output layer produces an
estimate of the posterior probability P (s|ot) of each tied state
given the observation ot:

P (s|ot) =
exp(WL+1hL + bL+1)∑
s′ exp(WL+1hL + bL+1)

(2)

The DNN is trained by stochastic gradient descent (SGD)
with momentum, where a cross-entropy cost function over
the training set is optimized. Pre-training methods such as
Stacked de-noising Auto-encoder (SdA) and Restricted Boltz-
mann Machines (RBM) can be used before fine-tuning to set
up a good parameter initialization.

Dropout is introduced into deep neural network training
as a form of regularization for fully connected network layers
[3, 11]. In Dropout training, the j-th element of a layer’s
output is set to zero with probability pj , or kept intact with
probability (1− pj). The hidden layer outputs after applying
Dropout could be represented as:

hi = σ(W ihi−1 + bi)Dz, 1 ≤ i ≤ L (3)

where z = {zj}j=1...m, and each zj ∼ Bernoulli(pj).
Dz =diag(z)∈ Rm×m. In each training mini-batch, zj is
sampled for each neuron in the network. In addition, the
final weight parameters need to be compensated for Dropout
training as:

W i = (1− p)W i (4)

where p is the dropout probability. In DropConnect, the
masking matrix Dz is no longer diagonal and it is multiplied
with the weight matrix W i.

3. GAUSSIAN STOCHASTIC NEURON

3.1. Model description

Dropout training can be viewed as injecting binary noise
into neurons by multiplication with the neuron activation.
In Gaussian stochastic neurons, noise samples are drawn
from a pre-defined Gaussian distribution and injected into the
neurons by addition. It can be formularized as:

hi = σ(W ihi−1 + bi + δpre) + δpost, 1 ≤ i ≤ L (5)

where we have the pre-activation noise term

δpre = {δjpre}j=1...m (6)

and the post-activation term

δpost = {δjpost}j=1...m (7)

We discuss two ways to generate samples for δpre and δpost.

Activation 

Pre-Gaussian Y(z) 

Post-Gaussian 

0 0 011

Sum of Bernoulli  

[0,1,0,1,0] Dropout mask

Fig. 1. Illustration of Gaussian stochastic neuron.

3.1.1. Untied Gaussian stochastic neurons

In untied Gaussian stochastic neurons (UGSN), all the δjpre
are independently draw from the same Gaussian distribution,
and all the δjpost are drawn from another Gaussian distribu-
tion. Namely:

δjpre ∼ N(µpre, σ
2
pre), δ

j
post ∼ N(µpost, σ

2
post) (8)

We do not save on the number of sampling operation com-
pared to Dropout but the noise perturbations are added instead
of multiplied onto the neuron.

3.1.2. Tied Gaussian stochastic neurons

In tied Gaussian stochastic neurons (TGSN), we simply tie all
the elements δjpre, j = 1...m together in each hidden layer,
and similarly for δjpost. So we have:

δ1pre = δ2pre = ... = δmpre ∼ N(µpre, σ
2
pre) (9)

Compared with the untied case, we only need to draw one
sample for each hidden layer and share that sample among its
neurons. Hence we can reduce the number of sampling by a
great magnitude.

3.2. Intuition and justification of Gaussian stochastic
neurons

The pre-Gaussian noise perturbation is added before the
activation function. There is a close relationship between
Dropout and the pre-activation Gaussian term δpre. [10]
investigated how to do fast Dropout by sampling from or
integrating a Gaussian approximation of Dropout’s objective.
Let the input to a neuron in Dropout training be written as:

Y (z) = W j,.
i Dzhi−1 (10)
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TFE VFE WER FTT
Baseline 0.434 0.449 19.3% 20.5h (17 epochs)
Dropout 0.448 0.450 19.5% 62h (17 epochs)
UGSN 0.424 0.453 18.7% 30h (16 epochs)
TGSN 0.423 0.458 18.5% 22.5h (17 epochs)

Table 1. SWB 110 hours setup on eval2000 test set, Train-
ing Frame Error (TFE), Validation Frame Error (VFE), Word
Error Rate (WER) and Fine-Tuning Time (FTT)

TFE VFE WER FTT
Baseline 0.389 0.430 4.5% 11h (19 epochs)
Dropout 0.393 0.427 4.57% 35h (16 epochs)
UGSN 0.372 0.422 4.24% 18h (18 epochs)
TGSN 0.366 0.430 4.04% 14.8h (19 epochs)

Table 2. Result on WSJ 80 hours setup with eval92 test set

where W j,.
i is the j-th row of the weight matrix W i. The ran-

dom variable Yz is a weighted sum of the Bernoulli random
variables {zj}j=1...m. Usually the hidden layer size would be
in the hundreds, and according to central limit theorem, Y (z)
can be well approximated by a single Gaussian distribution
(see Figure 1), namely:

Y (z) ≈ η = µη + σ2
ηε (11)

where ε ∼ N(0, 1), µη =
∑m

l=1 plhlwl, and σ2
η =

∑m
l=1 pl(1−

pl)(hlwl)
2. In our Gaussian stochastic neurons, we use

µpre =
∑m

l=1 hlwl, which is just the value propagated from
the previous layer. We keep σpre constant for simplicity of
computation.

It is worth analyzing tied and untied pre-activation Gaus-
sian terms in a bit more detail. In Dropout training, the sam-
pled mask is applied to the (i−1)-th layer and hence the “ran-
dom dropout” effect on the i-th layer is the same for all the
neurons in that layer. Therefore, the tied pre-activation term
can be viewed as an approximation to Dropout. In DropCon-
nect training, instead of sampling mask vectors for neurons,
a mask matrix is sampled for the weight matrix. In this case,
the dropout effect on each neuron in the upper layer is inde-
pendent, so untied pre-activation terms are a variant of Drop-
Connect.

The post-activation noise term is a Gaussian with µpost =
0 and a small variance σpost. In previous ASR research, re-
searchers tried to increase data variability by transforming
or distorting input features dynamically during training [12].
This is usually done by choosing a random Gaussian warp-
ing factor during Vocal Tract Length Perturbation (VTLP) in
the front-end feature extraction. While VTLP introduces vari-
ation on the input layer, δpost introduces distortion in each
hidden layer. However, the magnitude of distortion needs to
be controlled carefully, to prevent negative effects on conver-
gence.

4. EXPERIMENTS

4.1. CD-DNN-HMM baseline and Dropout system

We first investigate Gaussian stochastic neuron DNNs on
two large data sets: the Switchboard (SWB) 110 hours of
training setup described in [13] and the DARPA Wall Street
Journal (WSJ) 5000-word database. Evaluation is conducted
on the SWB eval2000 (Hub5’00) testing set and the WSJ
eval92 testing set. We build DNN acoustic models with the
Kaldi+PDNN recipe [14]. The GMM-HMM systems are
built with standard Kaldi recipe [15] and we obtain DNN
training labels from the SAT-GMM model in the fMLLR fea-
ture space. The SAT-GMM model achieves 25% and 6.15%
word error rate on SWB and WSJ, respectively. On SWB, we
build a neural network with 6 hidden layers and each layer
contains 1024 units. The input to this DNN is 11 neighboring
frames of 40-dimensional fMLLR features. We first pre-train
each hidden layer with de-noising auto-encoders and then do
fine-tuning, which is to optimize the cross-entropy objective
with an exponentially decaying learning rate schedule. The
learning rate starts from an initial value 0.08 and remains un-
changed for 8 epochs. Then the learning rate is halved in each
epoch until the frame accuracy on the validation set stops im-
proving. A momentum of 0.5 is used for fast convergence and
we use a mini-batch size of 256 for SGD. On WSJ, we use
a DNN with 5 hidden layer and extract same dimension of
filter-bank features as input. We keep other setting identical.
All our experiments are conducted on a Tesla K20m GPU
card.

Next we conduct Dropout training on top of the base-
line system. For Dropout DNN, fine-tuning uses the same
decay schedule, but starts with a much larger learning rate.
We set the initial learning rate to 1 in our experiments. We
only perform Dropout on the hidden layer units, with a global
dropout probability of 0.2. On the SWB and WSJ evalua-
tion sets, we find that Dropout does not give any improve-
ment on training frame accuracy or WER. We hypothesize
that Dropout regularization becomes less effective on large
training data sets. However, the fine-tuning time of Dropout
is twice more than CD-DNN-HMM baseline. The baseline
DNN and Dropout DNN results are listed in Table 1 for SWB
and 2 for WSJ. Baseline DNN achieved a WER of 19.3%
on the SWB eval2000 set and 4.5% on the WSJ eval92 set.
Dropout DNN achieved slightly worse WERs of 19.5% and
4.57%.

4.2. CD-DNN-HMM with Gaussian stochastic neuron

We evaluate the performance of tied/untied Gaussian stochas-
tic neurons respectively. Fine-tuning of Gaussian stochastic
neuron DNNs follows the same decay schedule as the base-
line. We find that although Dropout is relatively insensitive to
a large initial learning rate, it is important to choose a good
initial learning rate for stochastic neuron DNNs. In our exper-
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TFE VFE WER FTT
Baseline 0.570 0.607 68.9% 55min (20 epochs)
Dropout 0.543 0.595 66.6% 4h16min (17 epochs)
UGSN 0.513 0.607 66.7% 1h52min (18 epochs)
TGSN 0.508 0.613 67.1% 1h28min (18 epochs)

Table 3. Result on Tagalog 10 hours setup with 2 hours de-
velopment set

TFE VFE WER FTT
Baseline 0.558 0.576 50.0% 14h (23 epochs)
Dropout 0.560 0.573 50.0% 40h(19 epochs)
UGSN 0.552 0.578 49.3% 17h (17 epochs)
TGSN 0.546 0.581 49.2% 15h (18 epochs)

Table 4. Result on Tagalog 80 hours setup with 2 hours de-
velopment set

iments, when the initial learning rate is below 0.4, the DNN
converges to a poor local minimum and does not give any
improvement on the training frame accuracy. When the ini-
tial learning rate is greater than 0.8, the training frame error
blows up easily and training will crash. Hence we choose 0.6
as the initial learning rate both for the untied and tied cases.
We empirically choose hyper parameter of the distributions of
the noise in stochastic neuron. In the training of all stochastic
neuron DNNs, we set σpre = 0.15 and σpost = 0.15.

4.2.1. Untied Gaussian stochastic neuron

UGSN reduced WER by 0.6% (3% relative) on SWB and
0.26% (5.7% relative) on WSJ compared to the baseline
DNN, as shown in Tables 1 and 2. UGSN did not reduce the
number of sampling operations during training. Surprisingly,
we found that the UGSN DNN fine-tuning is much faster
than Dropout DNN and it converges to a lower training frame
error with a comparable validation frame error, which means
overfitting does not occur. We suspect the reason might be
that multiplicative noise is more expensive than additive noise
in terms of computation. It also might due to implementation
issues. We need to further investigate this point in our future
work.

4.2.2. Tied Gaussian stochastic neuron

On both the SWB and WSJ evaluation sets, TSGN yields a
higher improvement than untied case. It reduced the WER to
18.5% (4% relative gains) and 4.04% (10.2% relative gains),
respectively. Because in each layer only one Gaussian is sam-
pled and shared among all hidden units, the number of sam-
pling operation is greatly reduced in TSGN DNN training.
We see that the training time is less than the untied case and
for SWB, it is only 2 hours more than the baseline.

4.3. Experiments on BABEL DATA

We further evaluated Gaussian stochastic neuron DNNs under
low resource conditions. Here we use the BABEL corpus col-
lected in the IARPA BABEL research program. We conduct
our experiment on the Tagalog corpus (IARPA-babel106-
v0.2f) with 10 hours (Limited language pack) training data
and 80 hours training data (Full language pack) respectively.
We follow a similar procedure of building a DNN baseline
system as in the WSJ experiment. The result of 10 hours
training data setup is shown in Table 3. We see that UGSN
yields better training frame error and the same WER com-
pared with Dropout DNN. However, it only takes less than
half of the time used in the Dropout setup. TGSN achieved
a WER of 67.1%, 0.4% worse than the untied case, but there
was still a 1.8% absolute improvement over the baseline. As
we expected, the training time can be further reduced com-
pared to the untied case. Table 4 shows the result with 80
hours training data. We observed similar phenomena as in
SWB and WSJ. Although the baseline WER is high, Dropout
still does not improve system performance on 80 hours train-
ing data setup. With Gaussian stochastic neuron, we can
achieve a lower WER of 49.2% with much less training time.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigated the use of Gaussian stochastic
neurons to regularize deep neural network training in acous-
tic modeling. TGSN can be viewed as an approximation of
Dropout and UGSN performs similarly to DropConnect. We
observe on large data sets that Dropout DNNs tend to be less
useful, but Gaussian stochastic neuron DNNs can still im-
prove system performance. In the situation of limited train-
ing data, UGSN can yield the same performance as Dropout
DNNs while saving a lot time during the fine-tuning.

In future work, we plan to compare Gaussian stochas-
tic neuron DNNs with DropConnect and also DNN trained
by directly approximating the Dropout objective function as
proposed in [10]. It is also interesting to apply Gaussian
stochastic neuron regularization on Max-out networks [16],
where Dropout is used along with Max-out activation to pre-
vent overfitting. Finally, we need to further investigate the
reason why UGSN DNNs can be trained faster than Dropout
DNNs. Namely, we need to investigate if the difference is
inherent to the training procedure or an implementation issue.
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