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Abstract

Signal clipping is often observed in speech acquisition, due to the limited
numerical range or the non-linear compensation of recording devices. The
clipping inevitably changes the spectrum of speech signal, and thus partially
distorts the speaker information contained in the signal. This paper investigates
the impact of signal clipping on speaker recognition, and proposes a simple yet
effective clipping detection approach as well as a signal reconstruction approach
based on deep neural networks (DNNs) to reconstruct the signal from a clipped
one. The experiments are conducted on the core test of the NIST SRE2008 task
by simulating clipped speech at various clipping rates. The results show that
clipping does impact the performance of speaker recognition, but the impact is
rather marginal unless the clipping is highly aggressive with the clipping rate
larger than 80%. We also find that the simple distribution-based detection
method is capable of detecting clipped speech with a higher accuracy, and the
DNN-based reconstruction can achieve promising performance gains for speaker
recognition on clipped speech.
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1 Introduction
After decades of research, current speaker recognition (also known as voiceprint

recognition) has achieved rather satisfactory performance, given that the enrollment

and test utterances are sufficiently long and the quality is sufficiently high, that is

to say, the speech signals are well recorded and the noise corruption is limited [1, 2].

However, when the signals are corrupted, the performance of a speaker recognition

system will generally degrade significantly.

A lot of research has been conducted to improve the robustness of speaker recogni-

tion, for example in conditions with mismatched channels and loud noises. Various

feature-based approaches (such as feature adaptation) or model-based approaches

(such as channel synthesis or channel factorization) have been demonstrated effec-

tive to mitigate impact of some corruptions such as channel mismatch and back-

ground noises. For a particular corruption, signal clipping, however, the research

is still very limited. Denoting the maximum amplitude of a signal by Em, and the

maximum sampling value of the recording facility by Eq, signal clipping is observed

when Em exceeds Eq, resulting in the received sample ceiled at Eq. In some cir-

cumstances, the recording facility will adjust the recording gain automatically when
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high-volume input is detected. In this case, the received sample may be ceiled at

a value Ec that is lower than Eq. We define Ec as the ‘clipping value’ in this pa-

per. Fig. 1 illustrates the clipping phenomenon of a sine signal sampled at 8 − bit
precision, and Fig. 2 shows two real-world clipped speech signals with and without

automatic gain adjustment, respectively.
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Figure 1 Speech clipping of a sine signal with 8-bit precision.

Figure 2 Speech clipping with (left) or without (right) automatic gain adjustment.

Although often ignored in speaker recognition, the clipping phenomenon has

gained much attention in other fields of speech processing. For example, [3] conduct-

ed a systematic study on the impact of signal clipping on speech quality. [4] reported

that clipped speech could be perfectly intelligible, even if the clipping value Ec was

10% of the amplitude of the original signal, though the speech quality reduction

could be noticed. [5] found that the clipping value at which the intelligibility of

speech started to be significantly affected coincides with the clipping value at which

the quality of the speech was judged to be unacceptable. [6] and [7] presented a de-

tailed analysis on properties of clipped speech and its impact on automatic speech

recognition (ASR) and found that clipping might cause noticeable signal distortion

that should be carefully compensated before the speech is fed to the ASR system.

A similar study was also conducted in [6].
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In order to mitigate the impact of clipping, researchers have proposed some ap-

proaches to reconstructing the original signal, particularly in the ASR commu-

nity [8]. A straightforward solution was to employ a regression model to predict

the original values of clipped samples, for instance, the linear predictive coding

method [9]. [10] used the EM algorithm to perform the reconstruction with an it-

erative procedure, where the criterion was to minimize the sum of squares of the

residual errors. Similarly, Selesnick [11] proposed a de-clipping approach based on

the principle of minimizing the third derivative of the reconstructed signals. [6] pro-

posed a reconstruction approach based on sparse analysis. A similar approach was

proposed in [12], where distortion was separated and eliminated by sparse decompo-

sition using the orthogonal matching pursuit (OMP) algorithm. This approach was

effective for various distortions, including clipping, impulse noises and pack loss.

Other related approaches involved sample interpolation [13, 14], bandwidth exten-

sion [15, 16, 17], and concealment [18, 19]. Note that almost all the above-mentioned

reconstruction methods were based on linear models, whereas the distortion caused

by clipping is obviously nonlinear. A better de-clipping approach preferably nonlin-

ear, is desired.

This paper studies the impact of clipped speech on speaker recognition. From

the results obtained in the ASR research as mentioned above, one can conjecture

that clipping should impact speaker recognition if it is aggressive. However, speaker

recognition and ASR are two fundamentally different tasks, and it is interesting to

investigate how the clipping impacts speaker recognition. In addition, encouraged

by the performance gains obtained in ASR with clipped speech reconstruction,

this paper proposes a novel clipping reconstruction method based on deep neural

networks (DNNs), which can learn the complex nonlinear distortion associated with

clipping, and therefore is highly powerful for recovering clipped speech.

The experiments were conducted on the core test of the NIST SRE2008 task, by

simulating clipped speech at various clipping values. Two speaker recognition sys-

tems were constructed, based on the conventional Gaussian mixture model-universal

background model (GMM-UBM) architecture and the state-of-the-art i-vector mod-

el, respectively. The results show that clipping does impact speaker recognition, but

the impact is rather marginal unless the clipping is aggressive. Specifically, we ob-

serve that the recognition performance largely remains if the clipping value is higher

than 20% of the amplitude of the original signal (Ec ≥ 0.2Em). In addition, the

i-vector system is clearly more robust against clipping. We also see that a simple

distribution-based detection approach is capable of detecting clipping at a high ac-

curacy, and the DNN-based clipping reconstruction can offer promising performance

gains for speaker recognition.

The rest of the paper is organized as follows: Sec. 2 analyzes the spectrum distor-

tion caused by speech clipping in a basis of a sine signal. Sec. 3 discusses the impact

of clipped speech on two speaker recognition systems. A distribution-based clipping

detection approach is proposed in Sec. 4 and the DNN-based clipping reconstruction

approach is proposed in Sec. 5. The whole paper is concluded by Sec. 6.

2 Analysis on clipping
In order to study the clipping phenomenon, we first simulate some clipped speech

and study the spectrum distortions it caused. The simulation is helpful since the
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clipping rate can be controlled in such a way that the distortion and its impact on

human auditory systems can be studied systematically.

2.1 Definitions

For simplification, we first define some quantities that will be used in this study. As

mentioned in Sec. 1, we denote the concept of the upper limit of the sample range

as Eq, define the maximum amplitude of a speech signal as Em and that of the

clipped speech signal as Ec, which is also mentioned as the clipping value in this

paper. The ‘clipping rate’ γ is defined as the proportion of the ‘clipped amplitude’,

given by

γ = 1− Ec
Em

.

.

The bigger the γ is, the more proportion of the ‘amplitude’ is cut off. Specially,

γ = 0 means that no portion of the signal is clipped.

Note that in practice, clipping occurs when the sample value exceeds the sample

range and so Ec is the upper limit of the sample value Eq, and so the maximum

amplitude of the original signal Em is unknown. The definitions of Em and Ec are

just for simulation, and in this case, both Ec and Em are known and smaller than

Eq.

2.2 Analysis on a clipped sine signal

We start the study on clipping by observing the spectrum distortion caused by

clipping on a simple sine signal. The reason of choosing the sine signal is two-fold:

firstly, it is the simplest signal with only one frequency component and hence is

easy to study; secondly and more importantly, any speech signal can be decomposed

into a weighted sum of sine signals of different frequencies according to the Fourier

transform, so the study on sine signals will shed lights on the impact of clipping for

any natural speech signals.

In this study, the frequency of the sine signal is selected to be 100Hz, and the

amplitude is fixed to 1, written mathematically as

s(t) = sin(
2π

100
t). (1)

This signal is clipped with a variety of clipping rates. Given a clipping rate γ, the

clipped signal of s(t) is given as follows:

s̃(t) =

{
s(t) (|s(t)| < 1− γ)

sgn(s(t))× α (|s(t)| ≥ 1− γ)
, (2)

where sgn(·) is the sign function.

The time and frequency domain representations of the clipped signals are shown

in Fig. 3. We can see that clipping does not change the fundamental frequency,
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Figure 3 The waveform (left) and spectrum (right) of the sine signal s(t) as a function of clipping
rate. a) Original sine signal with γ = 0; b) Clipped signal with γ = 0.25; c) Clipped signal with
γ = 0.75.

however it does introduce extra harmonics that attenuate the energy at the orig-

inal (fundamental) frequency. Obviously, a larger clipping rate γ leads to a more

aggressive clipping, and more spectrum distortion.
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Figure 4 Illustration of decomposition of a clipped sine signal with γ = 0.5.

Let’s derive these properties in a more rigorous way. First note that a clipped

sine signal can be decomposed into the original sine signal and a symmetric peri-

odic impulse signal, as shown in Fig. 4. Mathematically, the decomposition can be

formulated as

s̃(t) = sin(ωt)− g(t), (3)

where ω is the angel frequency, g(t) is the symmetric periodic impulse signal, which

can be further decomposed into two periodic impulse signals as

g(t) = f(t− T/4)− f(t+ T/4),
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where f(t) is the periodic impulse signal whose period is T . Note that T , the period

of the impulse signal, is determined by the ‘host signal’ sin(ωt), where T = 2π
ω . In

one period, the periodic rectangular function can be written as

f(t) =

{
sin(ωt+ π/2)− sin(ωτ/2 + π/2) |t| ≤ τ/2

0 τ/2 < |t| ≤ T/2
,

where τ is the width of the impulse signal. The decomposition process is illustrated

in Fig. 5.

0 10 20

−100

−50

0

50

100

ms
0 10 20

−100

−50

0

50

100

ms

=

0 10 20

−100

−50

0

50

100

ms

+

Figure 5 Illustration of decomposition of a symmetric periodic impulse signal with γ = 0.5.

Let {an} represent the Fourier series of f(t),

f(t) =

∞∑
n=−∞

ane
jnωt,

and the symmetric impulse signal can be written by

g(t) =

∞∑
n=−∞

an(ejnω(t−T/4) − ejnω(t+T/4))

=

∞∑
n=−∞

(−2j)ansin(nωT/4)ejnωt.

Combing with Equ. 3, we reach the main result for a clipped sine signal as

s̃(t) = sin(ωt) +

∞∑
n=−∞

2ansin(
nπ

2
)ej(nωt+

π
2 ). (4)

From Equ. 4, the following can be derived: (1) signal clipping introduces and only

introduces harmonic frequencies of the original frequency; (2) the harmonics appear

at frequencies corresponding to odd n; (3) the spectrum distortion is determined

by {an}, which is in turn determined by the clipping width τ . Obviously, these

derivations are consistent with the observations in Fig. 3.

For an actual speech signal, analyzing the impact of clipping is much more com-

plex. Particularly, different frequency components in a real signal possess different
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values of amplitude and phase, leading to very different {an} in Equ. 4 and re-

sulting in significant inter-frequency interference. A complex non-linear model is

probably required if one intends to reconstruct the original signal from a clipped

speech segment.

2.3 human perception evaluation

Although the impact of clipping in spectrum domain is observed, we are also in-

terested in the impact of clipping on human perception. In this study, we select

10 speech signals and use different clipping rates to generate clipped speech. The

speakers are asked to listen to the utterances clipped at different clipping rates

(including the case when γ = 0) and tell whether they are original or clipped. If

a clipped speech is recognized as the original speech, a non-difference is counted.

By calculating the average non-difference rate, which is the percentage of the non-

difference in all the listening trials, one can tell whether or not a particular clipping

rate causes significant impact on human perception.

There are 5 speakers are involved in these experiments, and the non-difference

rates with various clipping rates are shown in Fig. 6, where the horizontal axis is

the clipping rate where the vertical axis is the non-difference rate. It can be seen

from the figure that when the clipping rate is relatively small, clipping produces

no significant impact on human perception. However, when the clipping rate is

larger than 80%, one can perceive clear difference between a clipped speech and the

original one. This result is consistent with the findings in [4].

0 40 60 80 95
0

20

40

60

80

100

Clipping Rate (%)

C
lip

pi
ng

 In
se

ns
ib

le
 R

at
e 

(%
)

Figure 6 Percentage of clipping insensible listeners as a function of clipping rate in a perception
evaluation.

3 Impact of clipping on speaker recognition
This section studies the impact of speech clipping on the performance of speaker

recognition. The recognition experiments are conducted and evaluated on the data

of the NIST2008 core test, yet focusing on the same channel condition only. It is a

verification task, though we assume the conclusions obtained with verification are

largely shared with identification. The speech data are interviews recorded by micro-

phones, at an 8kHz sampling rate with 16-bit precision. The data set involves 171
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female speakers and 996 test utterances in total. The enrollment and test utterances

each lasts about 3 minutes.

Two speaker recognition systems are constructed: one is a traditional GMM-UBM

system while the other one is an i-vector system. The Fisher database is used as

the development set to train the UBM for both systems, and the loading matrix T

for the i-vector system. The PLDA model [20, 21] is also used to further improve

the performance of the i-vector system, and the model is trained using the same

development data.

The acoustic features are 60-dimensional MFCCs, including 19 dimensional M-

FCCs and 1 dimension of energy, plus their first- and second- order derivatives. The

UBM/GMM contains 2, 048 Gaussian components, and the dimension of i-vectors

is 400.

3.1 Speaker recognition results

We report speaker recognition results with the GMM-UBM system and the i-vector

system. The enrollment and test utterances are clipped at four clipping rates (40%,

60%, 80%, and 90%), and then speaker recognition is conducted with the clipped

speech at various clipping rates, with performance evaluated in terms of the equal

error rate (EER).

The EER results of the GMM-UBM system are reported in Fig. 7, and the results

of the i-vector system are reported in Fig. 8. Each group in the figures represents

a particular clipping condition on the enrollment utterances, and each bar reports

the result of a particular clipping condition on the test utterances.

Figure 7 Results in EER for the GMM-UBM systems, with enrollment and test utterances clipped
at 4 different clipping rates.

From the results, we can see that speech clipping indeed impacts performance

of speaker recognition, for both the GMM-UBM system and the i-vector system.

However, the impact is rather marginal unless the clipping rate is larger than 80%.

This result is consistent with the observation of the subjective listening test reported

in Sec. 2.3, and suggests that the degradation caused by clipping is not as significant

as one may imagine at the first glance.

When comparing the GMM-UBM system with the i-vector system, it can be

seen that the i-vector system outperforms the GMM-UBM system in all the test
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Figure 8 Results in EER for the i-vector system, with enrollment and test utterances clipped at 4
different clipping rates.

conditions, and it exhibits more robustness against clipped speech. For example,

keeping the enrollment utterances unclipped (γ=0) and compare the performance

of the two systems when the clipping rate of the test utterances is set to 80%, we

observe clear performance degradation with the GMM-UBM system, however for

the i-vector system the result is almost equal to the one with the unclipped test

utterances. If the clipping rate goes up to 90%, the performance of the GMM-UBM

system decreases by 92%, while the i-vector system decreases by 50% only. In addi-

tion, when the clipping is highly aggressive with the enrollment utterances, serious

performance degradation is observed with the GMM-UBM system, no matter how

big the clipping rate is for the test utterances. For the i-vector system, however, the

performance does not significantly degrade. The advantage of i-vector systems on

clipped speech may be contributed to the low dimensionality of the i-vector space

which retains information that is mostly related to speaker characteristics. Further-

more, the PLDA model may contribute to the discriminative power of i-vectors and

lead to a model more robust against clipping.

3.2 Visualization for speaker model change

To gain further insight on how speech clipping impacts speaker recognition, this

section visualizes the change on speaker models caused by clipping. Two visualiza-

tion approaches are employed: dimension selection and dimension reduction. In the

first approach, two dimensions are randomly selected from the parameter supervec-

tor of a speaker model to represent the speaker, and in the second approach, the

t-SNE algorithm [22, 23, 24, 25] is used to project the entire speaker model to a

two-dimensional space.

3.2.1 Visualization by dimensions selection

We first investigate the dimension selection approach, where two dimensions are

selected from the supervector of a speaker model to represent the speaker, which

means the i-vector itself in the i-vector model, or the concatenation of the mean

vectors of the components in the GMM-UBM model. Fig. 9 shows the result of the

i-vector system with different clipping rates. Each speaker is represented by the first
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two dimensions of its enrollment i-vector, and the model change caused by speech

clipping can be read from the displacement between the two-dimensional i-vectors

enrolled with and without clipping.

Figure 9 Model change in the i-vector system with different clipping rates. The first two
dimensions of a speaker’s i-vector are selected to represent the speaker.

From Fig. 9, it can be see that a more aggressive clipping leads to a more significant

displacement in the i-vector space. In the case of γ ≥ 60%, the impact of clipping

is so significant that the speakers are difficult to be distinguished. The impact

of speech clipping can be also measured by an i-vector distortion rate. Let D(γ)

denote the sum of the i-vector displacements at a particular clipping rate γ, and

Dv as the summed length of the original i-vectors (enrolled with unclipped speech).

The i-vector distortion rate is defined as

∆(γ) =
D(γ)

Dv
. (5)

Fig. 10 presents the curve of ∆(γ). It can be seen that when the clipping rate is

less than 60%, the distortion is relative small, and when the clipping rate is larger

than 60%, the distortion increases sharply. This is consistent with the results of

the human perception in Sec. 2.3 and the speaker recognition results reported in

Sec. 3.1.

For the GMM-UBM system, each speaker is represented by a GMM. To visualize

a speaker, we randomly select a Gaussian component from the speaker’s GMM and
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Figure 10 I-vector distortion rate ∆(γ) as a function of clipping rate.

then select two dimensions of its mean vector as a two-dimensional representation

of the speaker (speaker vector). Again, the impact of speech clipping is represented

by the displacement in the speaker vector space. The results are shown in Fig. 11.

Similar to the case of the i-vector system, we observe that when the clipping rate is

relatively low (less than 60%), the speaker models are not much impacted; however,

when the clipping rate is larger than 60%, the speaker models are changed such

significantly that speakers are largely undistinguishable.

Figure 11 Model change in the GMM-UBM system with different clipping rates. A Gaussian
component is randomly selected, and the first two dimensions are selected from the mean vector
of the selected Gaussian to represent speakers.

3.2.2 Visualization by t-SNE

The dimension selection process selects two dimensions randomly. To have a more

confident visualization, we employ the t-SNE technique ito project speaker models
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to a two-dimension space. This approach can be regarded as a dimension reduction

method, with which the affinity property of speaker models in the high-dimension

space is reserved as much as possible when projecting to a two-dimensional space [22,

23, 24, 25].

For the i-vector system, visualization with t-SNE is straightforward: we simply

project the 400-dimensional enrollment i-vectors into two-dimensional vectors and

observe the displacement caused by speech clipping, as in the previous section.

Fig. 12 presents the results, where i-vectors enrolled with different clipping rates

are drawn together. Again, a clear impact on speaker models can be observed if

clipping rate is large than 60%.

Figure 12 Model change in the i-vector system. I-vectors are projected into two-dimensional
vectors by using t-SNE.

For the GMM-UBM system, a speaker is represented by the supervector of its

GMM model. Due to the huge dimensions, it is impossible to run t-SNE on super-

vectors directly. We therefore choose the first two dimensions of the mean vector of

each GMM component and concatenate them together to form a partial supervec-

tor, and run t-SNE with this representation[1]. The results are shown in Fig. 13. It

can be seen that the GMM-based system is more sensitive to signal clipping than

the i-vector system. For both the i-vector and the GMM-UBM systems, it seems

that that if the clipping rate is small, the change on models caused by clipping is

relative small and does not impact the discrimination among speakers. This explains

the results obtained in Sec. 3.1 from another view.

4 Clipping detection
Intuitively, a number of approaches can be employed to improve speaker recognition

for clipped speech data. Firstly, the clipped speech should be used in enrollment,

so that part of the patterns of clipped speech can be learned. We have seen in

[1]We also run the experiment with different choice of the mean vector dimensions,

and similar results have been obtained.
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Figure 13 Model change in GMM-UBM system. Speaker GMMs are projected into
two-dimensional vectors by using t-SNE.

Sec. 3 that performance with enrollment and test data at the same clipping rate is

indeed slightly superior to the cases where the clipping rates are highly mismatched.

Secondly, by learning a transform that maps clipped speech to the original speech,

the original speech can be reconstructed. This approach is highly promising and we

will discuss it in the next section. Thirdly, we can detect the clipped speech and

take appropriate actions if clipping is detected, for example, adjust the recording

facilities or re-record the speech. This section focuses on clipping detection.

4.1 Clipping detection approach

We propose a simple clipping detection approach based on the time-domain proper-

ties of clipped speech. The basic idea is that, when clipping occurs, the distribution

of sample values of the signal exhibits different patterns from the ones of a normal

unclipped signal. To verify this difference, we select an unclipped speech segment

and a speech segment clipped at a clipping rate of 60%. First divide the sample

value range into a number of non-overlapped sub-intervals, and then distribute the

signal samples to the sub-intervals according to their sample values. This leads to

a distribution of the samples over the sub-intervals. The distribution of the un-

clipped speech and clipped speech are shown in Fig. 14 and Fig. 15, respectively

(the small-valued samples are discarded to avoid the impact of white noise).

Figures show that the distributions of the two types of speech segments are quite

different: the majority of samples of the unclipped speech concentrate within the

sub-intervals corresponding to middle values, while the distribution of the clipped

speech concentrates in the last sub-interval. This difference can be adopted to detect

clipped speech segments.

Accordingly, we propose the following clipping detection algorithm:

• Check the maximum amplitude value smax of all the samples in the given

speech signal s, and divide the range [0, smax] into a predefined number of,

say 20 as an example in this paper, sub-intervals {βi : i = 1, 2, .., 20}.
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Figure 14 Distribution of unclipped speech segment
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Figure 15 Distribution of clipped speech segment

• Divide the samples of the speech signal s into non-overlapped segments

s = [c1, c2, ..., cK ] where K is the total segments number of the utterance.

Each segment is 0.5-second long and regarded as the unit of detection for the

clipping event.

• Given a specific segment ck, distribute its samples to the sub-intervals {βi},
according to the sample values.

• Calculate the distribution over the sub-intervals {βi}, and detect clipped seg-

ments by the distribution mass of the last sub-interval. If β20 > ε where ε is

a predefined threshold, the segment is regarded as clipped, otherwise normal.

The performance of the proposed clipping detection is evaluated in terms of the

false acceptance rate (FAR) and the false rejection rate (FRR), where FAR reflects

the probability that a normal segment is recognized as clipped, and FRR reflects the

probability that a clipped segment is recognized as normal. By varying the threshold

ε, a tradeoff between the FAR and FRR is obtained, leading to a detection error

tradeoff (DET) curve.

We randomly select 1-hour speech from the development set to conduct the clip-

ping detection experiments. The DET curves with different clipping rates are shown

in Fig. 16. From the figure, it can be seen that the proposed clipping detection
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method is rather accurate (the EER is less than 1%). Even if the clipping rate is

relatively large (40%), a rather high accuracy is still achieved.
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Figure 16 DET curves of the proposed clipping detection.

4.2 Sample removal after clipping detection

Intuitively, the removal of clipped speech segments can prevent the negative impact

caused by clipping, and thus may improve the performance of speaker recognition.

However, removing clipped segments will also reduce the amount of effective data for

either enrollment or testing, and thus perhaps lead to performance degradation. The

exact consequence of clipped speech removal is therefore largely unknown and may

be dependent on multiple factors such as data profile, clipping rate, and accuracy

of the clipping detection. This section presents a pragmatic study.

The experiments are conducted with the same configurations as in Sec. 3, except

that the clipped speech segments are discarded in enrollment and testing. Since the

i-vector system performs significantly better than the GMM-UBM system, we only

report the results for the i-vector system. Fig. 17 presents the EER results based

on manual clipped speech transcription, and Fig. 18 reports the EER results based

on the label information produced by the clipping detection approach presented in

the previous section.

Results show no significant difference between the manual transcription and the

automatically generated labels, demonstrating that the proposed clipping detection

approach is effective. However, compared with the results in Fig. 8, after clipped

speech removal the performance of the i-vector system degrades.

The performance degradation with clipped segment removal might be associated

with two factors. Firstly, removing clipped segments reduces the amount of data

used for enrollment and testing. Statistics show that the average length of the

original enrollment/test utterances is about 3 minutes while after clipped segments

removal, the average length is significantly reduced, for example, to 80s with clipping

rate at 0.8. Fig. 19 presents the average length of the enrollment data after clipped

segment removal. Secondly, the clipped segments are mostly vowels that are assumed

to contain richer speaker information, so removing these segments tends to lose the

most discriminative part of the data.

As a summary, comparing with the distortion caused by clipping, the information

contained in the clipped speech is more important. This suggests that it be better
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Figure 17 Results in EER based on clipping transcription.

Figure 18 Results in EER based on clipping detection.

to utilize the clipped segments in some way instead of simply discarding them in

speaker recognition.

5 Clipped speech reconstruction

According to the previous section, clipped speech segments involve valuable but

distorted information for speaker recognition. We therefore try to seek an approach

to recovering speaker information from clipped speech signals.

An intuitive approach is to estimate the original signal in time domain. How-

ever this turns out to be rather difficult, as speech samples in time domain are

highly dynamic. A reasonable approach is to conduct the recovery in feature do-

main, which might be stable and easy to be integrated in the frontend pipeline of

speaker recognition systems. The simplest model is a linear transform, such as con-

strained maximum likelihood linear regression (MLLR), which maps feature vectors

of clipped speech to those of the original speech. This approach, however, is limited

by its nature of linearity. As we have discussed, clipping on real speech signals is

highly complex and nonlinear, particularly if the clipping rate is unknown or varies.
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Figure 19 Average length of enrollment utterances as a function of clipping rate.

The DNN model is suitable for learning complex patterns due to its hierarchical

architecture and multi-layer non-linearity. In this paper, we propose to use DNNs

to recover clipped speech in feature domain.

We note that the impact of speech clipping can be also compensated for in model

domain, according to the analysis in Sec. 3.2, by either a linear or a nonlinear model.

We will do further research on the model-based compensation in future.

5.1 DNN

Deep neural networks have gained much success in many research fields including

speech recognition, computer vision, and natural language processing [26]. A DNN

is a neural network (NN) that involves more than one hidden layers. NNs have been

studied in the speech community for decades. For example in speech recognition,

the NN has been used to substitute the GMM to produce frame likelihood [27], or

to produce long-context features that are used to substitute or augment to short-

term features, such as MFCCs [28]. Although promising, the NN-based approach

did not deliver overwhelming superiority over the conventional approaches. The

revolution took place in the ASR community in 2010, after a close collaboration

among academic and industrial research groups, including the University of Toron-

to, Microsoft, and IBM [26, 29, 30]. These researches found that very significant

performance improvements can be accomplished with DNNs when appropriate ini-

tialization was conducted, for example, by pre-training with restricted Boltzmann

machines (RBMs).

Encouraged by the success in ASR, the DNN (and the unsupervised version,

deep Boltzmann machine (DBM)) model has been investigated in a wide range

of research fields of speech processing, including speech synthesis [31, 32], music

pattern analysis [33, 34], speech enhancement [35, 36], voice activity detection [37]

and music recommendation [38]. Particularly, a very recent study applies DNN to

speaker recognition [39, 40]. The basic idea is to use a DNN model trained for

speech recognition to substitute the UBM, so that rich information in phones can

be employed to build a more accurate conditional probability model than the GMMs

that are trained in an unsupervised way. In this paper, we use the DNN model to

recover clipped speech.
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5.2 DNN-based clipped speech reconstruction

We construct a DNN that maps features of clipped speech to features of the original

speech. We randomly select 50-hour speech data as the development set to train the

DNN model. The speech signals of the development set are clipped at various clip-

ping rates, and are fed into the DNN as the input, with the corresponding original

speech signal as the output. Specifically, the MFCC features are extracted for both

the original speech and the clipped speech, and the features of the clipped speech

are fed into the DNN input units frame by frame, with the output units being

the corresponding frame of the original signal. Different from most of the speaker

recognition systems which use delta features to capture the dynamic properties of

speech signals, here only static MFCC features are used, but frames within a win-

dow are concatenated to form a ‘super frame’ to encode the dynamic information.

The window size is set to 9 frames (4 frames before and after the current frame,

respectively). Note that the clipped speech and the original speech are in the same

length, hence no alignment between the two data streams are required.

The DNN structure involves 3 hidden layers with each layer consisting of 1, 200

units. The training objective function is the mean square error between the MFCC

features of the reconstructed speech and the original one, and the stochastic gradient

descend (SGD) algorithm is applied to conduct the training. The learning rate starts

from a relatively large value (0.008), and then is gradually shrunk by halving the

value whenever no square error reduction on the development set is obtained. The

training stops when the square error reduction on the development set is getting

small (0.001 as the threshold). Neither momentum nor regularization has been used,

and no pre-training is employed since we do not observe clear advantage by involving

these techniques. Once the DNN has been trained, the MFCC features of clipped

speech are fed into the DNN and the MFCC features of the reconstructed speech

are read out from the DNN outputs.

5.3 Experimental results

We use the same data set and configurations as in the previous sections, with the

exception that the clipped data are reconstructed by the DNN model, instead of

simply discarded or are left as they are. In this experiment, the DNN model is

trained with the development set (the Fisher corpus) that has been used to train

the UBM and the loading matrix of the i-vector system. Again, the clipped speech

data are generated by setting the clipping rate at different levels.

Two DNN models are investigated: (1) the clipping rate in DNN training is the

same as that in the clipping reconstruction when testing; (2) the DNN is trained

by collecting clipped speech at various clipping rates, resulting in a universal DNN-

based clipping reconstructor. These two models are denoted by ‘CR-dependent’ and

‘CR-independent’ respectively (‘CR’ stands for ‘clipping rate’).

First we test the scenario where only the test utterances are clipped and thus

reconstruction is required. The results are shown in Fig. 20. We observe that with

the DNN-based reconstruction, the performance is considerably improved when the

clipping is aggressive. If the clipping is not such aggressive, the reconstruction does

not help, but importantly, it does not degrade the performance anyway. Interest-

ingly, the CR-independent DNN shows similar performance as the CR-dependent
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DNN. This is an interesting result and it suggests that a CR-independent model

may be sufficient for handling various clipping rates.
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Figure 20 ERR results with DNN-based clipping reconstruction. Only the test utterances are
clipped and reconstructed.

In the second scenario, both the enrollment utterances and test utterances are

clipped. We apply the DNN-based reconstruction either to both of the enrollment

and test utterances, or just to the test utterances. The results are shown in Fig. 21

and Fig. 22, respectively, for these two settings. We observe similar patterns as in

Fig. 20 that the reconstruction helps most too heavily clipped speech. The CR-

dependent reconstruction seems always stable and the performance does not de-

grade with weakly-clipped speech. The CR-independent reconstruction may lead

to marginal performance degradation with weakly-clipped speech, but in general it

works well.
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Figure 21 EER results with DNN-based clipping reconstruction. Both the enrollment and test
utterances are clipped and reconstructed.

6 Conclusions
This paper studies the phenomenon of speech clipping, a common signal corruption

in practical speaker recognition. We investigate the impact of speech clipping on
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Figure 22 EER results with DNN-based clipping reconstruction. Both the enrollment and test
utterances are clipped but only the test utterances are reconstructed.

two speaker recognition systems that are based on the GMM-UBM framework and

the i-vector model, respectively, and find that the i-vector system performs much

more robustly against clipping than its GMM-UBM counterpart. In addition, we

propose a simple yet effective clipping detection approach based on the distribution

of sample values, and utilize the detection result to remove clipped speech segments.

The experimental results show that clipped speech still contains speaker informa-

tion and it is better to retain them in practical systems. Finally, a clipped speech

reconstruction approach is proposed based on the DNN model. The results show

that the proposed approach can lead to considerable performance improvement for

speaker recognition, particularly for heavily-clipped speech data. Future work will

study complex distortions, such as clipping coupled with noises, and study better

DNN structures, particularly the recurrent DNN, which is supposed to be more suit-

able to learn the dynamic properties of clipped speech, leading to a more effective

clipped speech reconstruction.
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