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Abstract—We propose a zero-shot mispronunciation detection
approach that does not require any non-native data for model
training. Central to our method is a knowledge-based data
augmentation process. This process synthesizes mispronuncia-
tions by taking into account the typical error patterns of the
target group, subsequently using this synthesized data to train
an SVM as the detection model. To validate our approach, we
constructed a new L2 speech dataset named UY/CH-CHILD,
which comprises L2 Chinese speech samples from Uyghur
children. Experimental findings suggest that our knowledge-
based augmentation strategy proficiently identifies pronunciation
mistakes made by non-native children. Interestingly, with such
a zero-shot learning, the performance of the detection system is
on par with that of native human annotators. The dataset and
code will be available online. The code is now available online:
https://github.com/youzhenghai/knownledge-gop

Index Terms—Pronunciation error detection, Data augmenta-
tion, GOP

I. INTRODUCTION

As an indispensable part of Computer Assisted Language
Learning (CALL), Computer Assisted Pronunciation Training
(CAPT) equipped with pronunciation assessment technology
has been widely applied in foreign language learning [1]. We
focus on mispronunciation detection (MD) in this paper, a core
task in CAPT with the aim to identify mispronounced phones
given the canonical pronunciation [2].

Most of the present MD research is based on automatic
speech recognition (ASR). Among these methods, Goodness
of Pronunciation (GOP) [3] is perhaps the most widely used,
due to its simplicity and good generalizability. In principle,
GOP collects frame-level phone posteriors and integrates them
into a phone-level score, and the score can be used to make
MD decisions by comparing a pre-defined threshold. Several
variants of GOP variants were proposed. For instance, Shi et
al.[4] considered the confidence of each frame when integrat-
ing the frame-level posteriors. Sudhakara et al. [5] refined the
GOP by considering HMM transitions.

The paper was partly supported by the National Science Foundation of
China (NSFC) with NO. 62171250.

While GOP offers utility, its singular score might fall short
in mirroring the multifaceted quality of pronunciation. In
pursuit of a more comprehensive MD technique, Hu et al. [6]
presented a classifier approach. Specifically, they derived a
set of features from the frame-level posteriors and used the
features to train a classifier to discriminate correct and in-
correct pronunciations [6]. The classification approach offered
significant performance improvement compared to the simple
GOP approach and has been recognized as a strong baseline
for MD. Note that the classifier-based approach is flexible: it
can be used to involve multiple acoustic and phonetic features,
and can be used to collect segmental features to produce
utterance-level scores [7, 8].

The key strength of the classification approach is that
the classifier can learn pronunciation patterns of L2 learners
from non-native speech data. However, this requires a large
amount of non-native speech with high-quality annotation.
Unfortunately, annotating L2 speech is always challenging
as assessing pronunciations requires expert knowledge and
the assessment is highly subjective. This partly explains why
public L2 speech databases are rare.

To address the problem, we propose a zero-shot learning
approach without human-annotated L2 data but can still train
a reasonable MD classifier (support vector machine (SVM) in
our study) using only L1 data, e.g., the data used to train ASR
systems. Since L1 data do not contain pronunciation errors,
we synthesize mispronunciations by perturbing the phoneme
labels. Most importantly, the perturbation is based on the
knowledge of pronunciation errors of the target population, so
that the classifier can learn the mistakes that the L2 learners
tend to make. We call the approach knowledge-based data
augmentation. It should be highlighted that our proposal is
a zero-shot approach, as the real speech of L2 learners is not
required at all, making it applicable in any scenario where
mispronunciation annotation is impossible.

To test our proposed approach, we constructed a new
dataset, UY/CH-CHILD. The dataset involves 32021 utter-
ances in Chinese (mostly single words) spoken by 113 Uyghur



children aged from 4-8 years. Experiments show that the SVM
MD system trained with knowledge-based data augmentation
can effectively detect pronunciation errors made by non-native
children, and the MD system works not worse than human
annotators.

II. RELATED WORK

Mispronunciation detection has been approached in three
ways. The first approach is pronunciation scoring [9], which
collects information from ASR output and composes a phone-
level score to reflect the pronunciation quality. GOP is the most
representative in this category [3]. This approach is simple
and effective, but requires a powerful acoustic model, ideally
adapted to the L2 data. The second MD approach uses an
extended recognition network (ERN) [10], i.e., augmenting the
decoding graph with mispronunciation paths. This approach
cannot deal with unknown mispronunciations, and the perfor-
mance often degrades when the number of mispronunciations
is large. The third approach is based on phone ASR, and
MD is performed by comparing the ASR output with the
canonical phone sequence directly. This approach attracted
more attention recently, due to the thriving of the end-to-end
ASR techniques [11–15]. A key shortage of this approach is
that it requires a large amount of L2 training data, making
it unsuitable in many situations. Our proposed approach is
based on pronunciation scoring, though it involves a classifier
to perform MD, and the classifier is trained in a zero-shot
manner.

The idea of data augmentation is not new in MD. For
instance, Fu et al. [12] synthesized mispronounced labels to
deal with the data imbalance problem when training end-to-
end MD models. Recently, [16] treated data augmentation as
the main tool to solve the data sparsity problem when training
end-to-end MD models. Our work is related, but differs from
theirs significantly: (1) We use pronunciation knowledge when
synthesizing mispronunciations; (2) We use the synthesized
data to train a simple SVM MD classifier rather than the heavy
end-to-end MD model.

III. METHOD

We will briefly describe the ERN, the GOP, and the clas-
sification approach, and then introduce the zero-shot learning
with knowledge-based data augmentation.

A. Extended Recognition Network

ERN is a popular approach for MD. It constructs an
extended decoding graph called ERN for each single test
utterance, and the ERN involves the paths of the canonical
pronunciation as well as potential mispronunciations, hence
representing how L2 learners with different native language
backgrounds might mispronounce. The potential mispronunci-
ations can be regarded as prior knowledge, and can be obtained
from either linguistic experts or an L2 dataset. When testing
an utterance, construct an ERN using its transcription and the
prior knowledge, and then conduct speech recognition con-
strained by the constructed ERN. If the resultant optimal path

is not the one corresponding to the canonical pronunciation,
a mispronunciation is detected. Fig. 1 shows an example of
ERNs where the canonical pronunciation is ‘da4 cong1’.
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Fig. 1. An extended recognition network (ERN) that involves the canonical
pronunciation ‘da4 cong1’ and potential mispronunciations such as ‘za4
chong1’, ‘da4 song1’.

B. GOP scoring

Denote p(qi|ot) the frame-wise posterior over phone qi at
time t, the log posterior probability (LPP) of speech segment
o[ts, te] is defined as follows:

LPP (qi) = log p (qi | o; ts, te)

≈ 1

te − ts + 1

te∑
t=ls

log p (qi | ot)
(1)

The GOP score of a particular phone qi on this segment is
then computed as the log ratio of LPP:

GOP (qi) = log
LPP (qi)

maxqj∈Q LPP (qj)
(2)

where Q is the phone set. In practice, for each utterance the
canonical phone sequence is known, which can be used to
segment the speech into phone segments by forced alignment.
In our experiments, we use a well-trained DNN as the acoustic
model to perform the forced alignment and compute the frame-
wise phone posterior p(qi|ot).

Given a threshold, it is easy to judge whether a phone q in
the canonical transcription is well pronounced, by comparing
GOP (q) and the threshold.

C. SVM as MD classifier

As mentioned, a classifier trained with correct and incorrect
pronunciations is superior to the naive GOP scoring and
thresholding. We have chosen to use SVM as the classifier
due to its theoretical robustness. Following [6], the feature
vector of the SVM model is composed as follows:

[LPP (q1), LPP (q2), . . . , LPP (qM ),

LPR(q1 | qi), LPR(q2 | qi), . . . , LPR(qM | qi)]
(3)

where LPP (qi) is defined in Eq. 1 and LPR(qi|qj) is the log
posterior ratio between qj and qi, defined as follows:

LPR (qj | qi) = log p (qj | o; ts, te)
− log p (qi | o; ts, te) (4)

The SVM approach offers advantages over the GOP scoring.
Not only can it integrate more diverse information than the



GOP, but it also allows for the contribution of each information
factor to be learned from the target L2 data. This learning is
especially important when the acoustic model does not match
the test data. Unfortunately, in many situations L2 data are not
available. We will develop a data augmentation approach to
solve the problem.

D. Knowledge-based data Augmentation
We can utilize L1 data in place of L2 data to train the

MD classifier. Given that L1 data does not contain mispro-
nunciations, we can adopt a synthesis approach. Specifically,
we randomly change the phone label of a speech segment s
from r to r′ and use the resultant pair (s, r′) as a ‘positive
sample’ of mispronunciations (labeled as ‘F’). The original
correctly labeled pair (s, r) is used as a ‘negative sample’
(labeled as ‘T’). It should be emphasized that the segmentation
information (starting and ending time) is obtained from the
forced alignment with the correct labels. Note that in L2-
ARCTIC[17], three pronunciation errors were defined: inser-
tion, substitution and deletion. However in our experiments,
our task is to detect mispronunciations in isolation words, for
which deletion and insertion can be ignored. Moreover, tone
substitution is simulated, as this type of error is typical for
Chinese L2 learners.

Fig. 2 shows an example of the data augmentation process,
where phone c is substituted for s, and the MD label cor-
responding to c changes from ‘T’ to ’F’. The newly labeled
samples are used to train the SVM MD classifier.

a3 a3 a3 a3 ch ch ch ch ch u2 u2 u2 u2

T T T T T T T T T T T T T

a3 a3 a3 a3 sh sh sh sh sh u2 u2 u2 u2

T T T T F F F F F T T T T

Fig. 2. Data Augmentation in Force Alignment

The random data augmentation has been employed in pre-
vious studies, e.g., [16]. As shown in the next section, this ap-
proach does not lead to expected performance on mismatched
test data. A hypothesized reason is that the random substitution
cannot well represent the error patterns of pronunciations of
the target population, which is Uyghur children in our experi-
ments. For example, tone is important in Chinese but does not
exist in Uyghur. Therefore for Uyghur speakers, tone error is a
main source of mispronunciation, especially when they started
to learn Chinese in childhood. Unfortunately, random sampling
cannot produce sufficient tone substitutions. The knowledge
about how the speakers may make pronunciation errors is
crucial information and can be used to guide the synthesis
process to produce the most important samples for the SVM
classifier.

A simple way to collect this knowledge is to compute the
probability that a canonical phone is pronounced as another

phone by Uyghur children, forming a confusion matrix as
shown in Fig. 3. At each location of the matrix, the color
represents the probability that the phone on the x-axis is
pronounced as the phone on the y-axis. In our study, the
UY/CH-CHILD dataset was used to derive the confusion
matrix.

Utilizing the confusion matrix and guided by expert knowl-
edge, we can systematically synthesize relevant mispronun-
ciations. Specifically, if the probability at location (qi, qj) is
6.2, then whenever qi is encountered, it will be altered to qj
with a likelihood of 6.2%. The MD label is then set to ‘F’.
Additionally, to enhance the robustness of the model during
training, we still introduced a certain amount of random errors.
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Fig. 3. The confusion matrix estimated from UY/CH-CHILD. The x-axis
represents the canonical phone, and the y-axis represents the phone really
pronounced.

IV. EXPERIMENT

A. Dataset

Two public datasets were used in our experiments:
AIShell-1 [18] was used to train the SVM classifier, and
THCHS30 [19] was used to test the performance of random
data augmentation. The datasets are both in native Chinese
and recorded in silent environments with a sampling rate 16k
Hz and the precision is 16 bits.

To test the zero-shot situation, we also constructed a Chinese
L2 dataset UY/CH-CHILD. The data set involves 113 children
(4-8 years old) in child gardens or primary schools in Yining,
Xinjiang Uygur Autonomous Region of China. All the children
are native Uyghur speakers and were learning Chinese. The
children were presented a picture of an object, e.g., apple
or washing machine, and were asked to pronounce the name
of the object. At each recording session, a supervisor guided
the child to pronounce the correct name of each object, and



demonstrated the pronunciation if necessary, until the object
was recognized.

The whole session was recorded, including the speech of the
supervisor and the child. In the post-processing phase, only
the names of the objects pronounced by the children were
kept and all the rest speech signals were removed. Therefore,
each utterance in the UY/CH-CHILD dataset contains a single
Chinese word, typically two or three characters.

Two kinds of labels were annotated for the utterances: (1)
the canonical phones and the truly pronounced phones; (2)
whether the pronunciation is correct (T) or not (F). The phone
labels (more precisely, initials and finals in Chinese) were used
to extract the confusion matrix shown in Fig. 3, and the T/F
labels were used to evaluate the MD performance. Note that
the T/F labels are not always consistent with the phone labels:
when the pronunciation quality is poor, it could be labeled as
‘F’ even if the phone is correctly pronounced.

Considering the high inter-rater variation, we invited 24
native speakers to perform the T/F annotation. There are 3
annotators for each utterance, and a phone segment is finally
labeled as T (correct) only if more than two annotators think
it is correct. In total, we identified 1,212 mispronunciations
from 21,162 phone pronunciations.

B. System configuration

We experimented with three types of systems: an ERN sys-
tem, a GOP system, and an SVM system. All the three systems
make use of the same acoustic model. The backbone is a C-
TDNN architecture composed of 2 Convolution block 7 TDNN
blocks, Each block incorporates ReLU and BatchNorm. The
model was trained on 11k Chinese speech data, including a
large variety in speakers and noise conditions. Accents were
included but with a limited amount. Very few children’s speech
were included. The training utilized frame-wise cross-entropy
as the loss function.

The SVM model uses a linear kernel, and was trained on
samples excerpted and synthesized from AIShell-1, by either
random data augmentation (SVM (Random)) or knowledge-
based data augmentation (SVM (Knowledge)).

C. Simulation Test

The first experiment is a simulation test with THCHS30.
The mispronunciations on the test set were simulated by
random data augmentation. For SVM, we only report the
results with random data augmentation as it fully matches
the test data. Note that the ERN system does not apply in
this simulation test as the phone substitution is fully random,
leading to a trivial and weak decoding network, as reported
in [11].

We use Pearson correlation (Corr.) and the F1 measurement
as the main metrics, and the precision and recall are also
presented. For SVM, the decisions from the SVM were used to
perform MD. For GOP, we selected a decision threshold that
yielded the same precision as the SVM system to simplify
the comparison. The results are shown in Table I. The results
indicate that the SVM classifier notably outperforms the

GOP, demonstrating that mispronunciation can be effectively
detected with simple data augmentation.

TABLE I
RESULTS ON THCHS30.

Corr. Precision Recall F1

GOP 0.59 0.61 0.60 0.60
SVM(Random) 0.66 0.61 0.77 0.68

D. Results on UY/CH-CHILD

The results on UY/CH-CHILD are shown in Table II, where
the SVM model was trained with either random or knowledge-
based data augmentation. As in our previous experiments,
the decision point for the GOP system was set to match the
precision of the SVM model trained with random augmenta-
tion. The ERN determined by the pronunciation rules under
three different error probability thresholds is also reported. The
same phonetic confusion matrix as in the knowledge-based
augmentation was used to construct the extended decoding
graph, by adding the high-confusing phones into the decoding
graph as alternative pronunciations. Three thresholds on the
substitution probability p in the confusion matrix were used to
identify the high-confusing phones: p > 0, p > 0.01, p > 0.02,
denoted by ERN(0), ERN(0.01), and ERN(0.02), respectively.

We also present the Precision-Recall (PR) curve for the
GOP system, elucidating the relationship between precision
and recall, as shown in Fig. 4. The positions of the two SVM
systems and the ERN (0.01) system are also illustrated in
the picture. Note that both the SVM and ERN systems are
decisive, for which PR curves are not straightforward.

The results indicate that ERN performs well in terms of
recall, but its precision score is low. The overall performance
(F1 in Table II and the position in Fig. 4) is lower than the GOP
system. This is not surprising and demonstrates a key shortage
of the ERN approach: controlling the alternative pronuncia-
tions is crucial, and to cover as much as mispronunciations
more false detections are inevitable.

Random augmentation does not prove effective as well,
resulting in performance that is inferior to that of the GOP.
The knowledge-based augmentation, on the other hand, per-
forms significantly better, manifesting a marked performance
improvement compared with the GOP system. This under-
scores the importance of incorporating prior knowledge about
pronunciation errors from actual speech during the training of
a mispronunciation classifier.

Overall, the above experiments demonstrated that the classi-
fier approach accompanied by knowledge-based data augmen-
tation is effective for zero-shot mispronunciation detection,
and it is a better way to use pronunciation knowledge than
the ERN approach.

E. Discussion

Compared to the results on THCHS30, the MD performance
on UY/CH-CHILD looks poor. An apparent reason is that



TABLE II
RESULTS ON UY/CH-CHILD.

Corr. Precision Recall F1

GOP 0.22 0.23 0.33 0.27
ERN(0) 0.14 0.11 0.58 0.19
ERN(0.01) 0.16 0.14 0.43 0.21
ERN(0.02) 0.15 0.14 0.49 0.21
SVM (Random) 0.16 0.23 0.18 0.20
SVM (Knowledge) 0.25 0.20 0.52 0.29
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Fig. 4. The Precision-Recall (PR) curve of the GOP system when tested
on UY/CH-CHILD is compared with a random classification curve. The
decision points of two SVM models and ERN(0.01) are also indicated. The
performance of a random classifier is also illustrated.

the ASR model does not match the test data that are non-
native and from children. Another contributing factor is the
inherent difficulty in labeling the dataset. This is due to
the high subjectivity in determining whether a pronunciation
is correct, and in most situations, the pronunciation is just
slightly different from the canonical way, leading to significant
uncertainty even for native speakers, not to say MD systems.
In comparison, the random substitution in the simulation test
produces a large proportion of mispronunciations that are easy
to test, e.g., replacing s to g, t to a. This means the real dataset
is much more difficult than the simulation data, not only for
MD systems, but also for humans.

To test this hypothesis, we plot the distribution of the
Pearson correlations (1) between any two human annotators;
(2) between the knowledge-based SVM system and human all
annotators. It can be seen from Fig. 5 that the inter-human
correlation is widely distributed, ranging from 0.1 to 0.6. In
comparison, the machine-human correlation is from 0.05 to
0.4, mostly in the range of inter-human correlations. This
means that the SVM MD system works not worse than a
human annotator on average.

V. CONCLUSIONS

In this study, we introduced a zero-shot mispronunciation
detection method that does not need any L2 speech data. The
core of our approach is knowledge-based data augmentation.
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Fig. 5. Distributions of the Pearson correlation coefficients (a) between the
human annotators, and (b) between the SVM MD system and the human
annotators.

By leveraging knowledge of the target population’s error
patterns, we synthesize mispronunciations and subsequently
train an SVM on this synthesized data to detect mispronun-
ciations. Our approach was evaluated on the UY/CH-CHILD
dataset, which comprises L2 Chinese speech recordings from
Uyghur children. Our results indicate that knowledge-based
data augmentation is rather effective, and it outperforms the
GOP and ERN, two most popular approaches. We also found
that prior knowledge of mispronunciation patterns is important
for training an effective MD classifier — random data aug-
mentation cannot lead to a reasonable performance. Finally,
our experiments demonstrated that the knowledge-based SVM
system rivals native human annotators.

Although promising results have been achieved with our
approach, zero-shot MD remains a very challenging task. Fu-
ture work includes deep investigation on the variation of phone
posteriors with L2 speech, test with speech of L1 children, and
focus on tone change, the main source of mispronunciations
of Chinese learners.
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