Graphical Models

Yang Feng

An introduction to Graphical Models — Michael Jordan
Scalable Machine Learning : Graphical Models
--Alex Amola
PRML — Christopher Bishop

* Graphical Moc
theory and pro

Gr

There are two

aphical Models

cls are a marriage between graph
pability theory

kinds of graphical models: directed

graphical models (Bayesian networks) and
undirected graphical models (Markov Random

fields)

Alternative names for graphical models: belief
networks, Bayesian networks, probabilistic
independent networks, Markov random fields,
loglinear models, influence diagrams

Graphical Models

e A key insight from the graphical model point of view:

It is not necessary to learn that which can
be inferred

e The weights in a network malke local assertions about
the relationships between neighboring nodes

e Inference algorithms turn these local assertions into
global assertions about the relationships between

nodes

— e.g., correlations between hidden units conditional
on an input-output pair

—e.g., the probability of an input vector given an
output vector

e T'his is achieved by associating a joint probability
distribution with the network

Outline

Directed graphical models
— Basics

— Sum-production Algorithm (Exact Inference)

Undirected graphical models
— Basics

— Junction Tree Algorithm (Exact Inference)
Learning

Inference

Rresentation

e Consider an arbitrary directed (acyclic) graph, where
each node in the graph corresponds to a random
variable (scalar or vector):

D

B E

e There is no a priori need to designate units as
“inputs,”’ “outputs” or “hidden”

e We want to associate a probability distribution
P(A,B,C, D, E, F) with this graph, and we want

all of our calculations to respect this distribution

e.g..
SeSpSpP(A,B,C, D, E, F)
SeSpS s P(A, B, C,D,E,F)

P(F|A, B) =

Some ways to use Directed GM

Prediction:

e we want to marginalize over the unshaded nodes in
each case (i.e., integrate them out from the joint

. probability)

, , - o “unsupervised learning” is the general case
Diagnosis, control, optimization: ' '

Supervised learning:

Specification of a GM

e T'here are two components to any graphical model:
— the qualitative specification
— the gquantitative specification

e Where does the qualitative specification come from?
— prior knowledge of causal relationships
— prior knowledge of modular relationships
— assessment from experts
— learning from data
— we simply like a certain architecture (e.g., a
layered graph)

Qualitative Specification

e A and B are marginally dependent

e A and B are conditionally zndependent

e A and B are marginally dependent

e A and B are conditionally zndependent

Qualitative Specification

e A and B are marginally independent
e A and B are conditionally dependent

e T'his is the interesting case...

Burglar Earthquake

Alarm Radio

e All connections (in both directions) are “excitatory”

e But an increase in “activation” of Earthquake leads
to a decrease in “activation” of Burglar

e Where does the “inhibition” come from?

(cont)

D-separation (Bayes Ball)

* Ais d-separated from B by C if all possible paths
from any node in A to any node in B are blocked
by C.

* A pathis blocked if it includes such that either

— the arrows on the path meet either head-to-tail or
tail-to-tail at the node, and the node is in the set C, or

— the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, is in the
set C.

A ll B | ' Ais d-separated from B by C

D-separation for Directed GM (cont)

PRML Figure 8.22

allblec x allb| f v

Bayes ball

Quantitative Specification

e Question: how do we specify a joint distribution over
the nodes in the graph?

e Answer: associate a conditional probability with
each node:
P(DIC)

P(A
(A) P(CIA.B) P(FID,E)

P(E) P(EIC)

and take the product of the local probabilities to
yield the global probabilities

Quantitative Specification (cont)
* Joint probability distribution C;C{'j)\g
Hp |Ipa1entb() f)T
O
* Parameter eshmahon

* If x is fully observed the likelihood breaks up
lng(iE 9) — Z 1ng(33i’xparents(i)a ‘9)

e If x is partially observed things get interesting
maximization, EM, variational, sampling ...

Markov Chain

pasi‘ pasl‘ present future —)@—b

Hidden Markov Chain ssor’s

mindset

observed

user actfion
user model for traversal through search results

Plate

Outline

Directed graphical models
— Basics

— Sum-production Algorithm (Exact Inference)

Undirected graphical models
— Basics

— Junction Tree Algorithm (Exact Inference)
Learning

Inference

Chains and Trees

Chains

n—1
p(x; 0) = p(xo; 6) H p(zia1|xi; 0) @—»G—»@—»@
=1

0_

Chains (cont)
0) "1:[P(xiq1|i:0) o

Z HPIJLEJ 1)

Qs Lj—1+T5 ooy,
0> 1—1sL1+41 3—l0($0)

Chains (cont)

n—1

p(;0) = p(xo; 0) | | p(wis1lai; 0) — —
=1

p(x;) = Z HP (zj]Tj_1)

LOy++Lj—1:L541---Tn .

—lo(xo)
= > > llo(zo)p(a1|zo)) H (zjlzj-1) -
L1;..-Lj—1,Lj41---Ty 1130 =2

=l1(x1)

Chains (cont)

n—1

p(z:0) = p(xo; 0) | | p(zisilz:: 6) — — —
=1

p(xi) = > p(xo)] [p(zslz;—1)

LOs---Lj—1:Lj41---Tn J=1

:=lo(xo)
- Z z [lo(zo)p(x1]z0)] Hp(xj\xj 1) =
L1,---Ti—1,Tit1---Tm 0O
—Jl(xl)

— Z Z ll(x1)p($2|$1) Hp(Ij\:l’J 1)

L2y...Lj—1:Lq41---Tm 33]_

—12($2)

Chains (cont)

n—1
p(x;0) = p(xo:0) | | plxisi|zi: 0) — — —
=1
n—1

p(x;) = li(z;) Z Hp(l’j+1|:vj)

Titl...Tn J=1

= l;(x;) Z HP($J+1|TJ>ZP(xn|xn 1)

Tig1---Tp—1 J=1 N
.—rn_:?a:n_l)
n—3
=Lix:) >] risilz))] plan—ilzn—2)rn—1(zn_1)
Ti41.--Tpn—2 J 7 Ilf«n, 1

"

-—Tn—Q(:En—Q)

Chains (cont)

n—1

p(x:0) = p(xo; 0) | | p(ziz1]zi 6) — — —
i—1

e Forwa rd recursion

10(330) - p(l“o) and lz(xz) - = Z li—l(ici—l)p(ici|$i—1)

Ti_1
e Backward recursion

rn(xy) (=1 and r;(x;) = Z riv1(xig1)p(Tiv1|x;)
* Marginalization & conditioningﬁprl

p(x;) = li(x;)ri(x;)
p(x)
p(x;)

plri,xivr) = Li(x)p(xipr|xi)ri(xiyr)

plx_;|x;) =

Chains (cont)

e Send forward messages starting from left node

mi—1—i(Ti) = Z mi—2—i—1(Ti—1)f(Tiz1,7;)
e Send backward messages starting from right node

mz‘+1—>7;($7;) = Z mi+2—>i+1(ﬂ3z’+1>f($z‘, $z‘+1)
Ti41

\

—— S,V SN —

e Forward/Backward messages as normal for chain
* When we have more edges for a vertex use ...

m2_>3(:c3) — E m1_>2(I2)7n6_>2($2)f(562, 1‘3)
T2

7n2—>6(il?6) — E m1—>2(332)7n3—>2(332)f(172;2176)
2

Tn2—>1(1171) — Zm3—>2(2172)7716—>2(-’172)f(-’1715 -’172)

T2

Trees (cont)

_—
~

—>—>
—»*—

* Forward/Backward messages as normal for chain

* When we have more edges for a vertex use ...

mo_.3(x3) = 5 mi_o(x2)me—_o(x2) f(x2,3)
T2

mo_g(xg) = E mi_.o(xo)ms_.o(xs) f(xs, x6)
€Tro

mo_1(x1) = E ms_o(xo)me—o(x2) f(x1, x2)
To

Trees (cont)

—-

\4—-4—-

* Forward/Backward messages as normal for chain
* When we have more edges for a vertex use ...

mo_.3(x3) = E mi_o(xo)me—o(x2) f(x2, x3)
ro

mo_.6(xs) = Z my_o(wo)msa_o(x2) f(x2, T6)

mo_1(x1) = Z ma_o(x2)me—a(x2) f(x1,2x2)

To

Trees (cont)

e X

_—
.

—_—y
. e X~ b

e Forward/Backward messages as normal for chain
* When we have more edges for a vertex use ...

m2—>3(333) = Z m1—>2(1?2)m6%2(332)f($27 x‘s)

mo_.¢(Ts) = Z my_o(xe)ms_o(x2) f(22, 26)

r2

ma 1 (x1) = > ma_a(x2)me2(x2) f(z1, x2)

T2

Trees (cont)

/

\4—-4—-

e Forward/Backward messages as normal for chain
* When we have more edges for a vertex use ...

7712-»3(173) = Z W11—>2(ﬂ32)ﬂl6—>2(332)f(172, 583)

T2

mo_.¢(xre) = E my_o(xo)ms .o(xs) f(xa, x6)
xr2

mo_.1(x1) = Z msa_.o(xo)me—o(x2) f(x1, x2)

Outline

Directed graphical models
— Basics

— Sum-production Algorithm (Exact Inference)

Undirected graphical models
— Basics

— Junction Tree Algorithm (Exact Inference)
Learning

Inference

Qualitative Specification for
Undirected GM

Key Concept
Observing nodes makes remainder
conditionally independent

Qualitative Specification for
Undirected GM

Key Concept
Observing nodes makes remainder
conditionally independent

Qualitative Specification for
Undirected GM

Key Concept
Observing nodes makes remainder
conditionally independent

Qualitative Specification for
Undirected GM

Key Concept
Observing nodes makes remainder
conditionally independent

Cliques

maximal fully connected subgraph

Cligues (cont)

maximal fully connected subgraph

Hammersley Clifford Theorem

If density has full support then it decomposes
into products of clique potentials

p(CIZ) - H 77b0(5’30)

Directed vs. Undirected

Causal description
Normalization automatic
Intuitive

Requires knowledge of
dependencies

Conditional
independence tricky
(Bayes Ball algorithm)

Noncausal description
(correlation only)

Intuitive
Easy modeling
Normalization difficult

Conditional independence
easy to read off (graph
connectivity)

Outline

Directed graphical models
— Basics

— Sum-production Algorithm (Exact Inference)

Undirected graphical models
— Basics

— Junction Tree Algorithm (Exact Inference)
Learning

Inference

Conversion from Directed to
Undirected

xr1 xro IN-—-1 TN
(a) O O _ O O
I I N IN-1

(b)<)4<>74<)_()

@ p(x) = p(z1)p(za|zy)p(es|z2) - plan|rN-1)

1
(b) P(X) — 7¢1,2($1, $2)1/)2,3(1172,$3) e wN—1,N($N—1,fL”N)
Ur1o(21,22) = plar)p(ze|z:)
%,3(372, 51’3) — p(ilf.a |$2)
Z/JN—1,N(SUN—1,3/”N) — p(«’BN\SUN—l)

Moral Graph

1 xr3 1 xr3

o o

Ty Ty

(a) (b)

Figure 8.33 Example of a simple
directed graph (a) and the corre-
sponding moral graph (b).

Junction Tree — No Loop

Junction Tree -- Triangulation

message passing possible

Junction Tree -- Triangulation

e Cligue size
Increases

* Separator set
size Increases

Junction Tree—Message Passing

* Joint Probability

p(x) o< Y(x1, w0, x3)Y (21, X3, TA) Y (21, T4, 5)Y (1, 5, T6) Y (1, T6, T7)

e Computing the normalization
m_.(xy1,x3) = Z¢(x1> T, T3)
Tro
m_>(a:1,:1:4) — Zm_,(xl,xg)w(scl,a:g,am)
r3

m_. (ry,rs) = E :m—>($1a$4)1/1(3317$4,335)
rq

Junction Tree—Message
Passing (Sum-Production Algorithm)

Me— ! xcﬂc E wc xc H mc”—>c(ajcﬂc")
c’”€N(c)\c’

M—»@

xc chc xc H et —>C(Icﬂc)

c¢’"€N(c)

* Initialize messages with 1
* Guaranteed to converge for (junction) trees
* Works well in practice even for loopy graphs

e Only local computations are required

Summary of the Junction Tree
Algorithm

1. Moralize the graph
2. Triangulate the graph

. Propagate by local message-passing in the junction
tree

o

e Note that the first two steps are “off-line”

e Note also that these steps provide a bound of the
complexity of the propagation step

Junction Tree Algorithm VS. (loopy)
Belief Propagation

There 1s an algorithm for exact inference on directed graphs without loops known
as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

Here we consider one simple approach to approximate inference in graphs with
loops, which builds directly on the previous discussion of exact inference in trees.
The idea is simply to apply the sum-product algorithm even though there is no guar-
antee that it will yield good results. This approach is known as loopy belief propa-
gation (Frey and MacKay, 1998) and is possible because the message passing rules
(8.66) and (8.69) for the sum-product algorithm are purely local. However, because
the graph now has cycles, information can flow many times around the graph. For
some models, the algorithm will converge, whereas for others it will not.

