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Why do we need HMM ?
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Read speech (vocabulary: 1K, 5K, 20K) Broadcast speech ~ Conversational speech
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Speech-recognition word-error rate, selected benchmarks, % Log scale
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The Switchboard corpus is a collection of recorded
telephone conversations widely used to train and
test speech-recognition systems
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Is ASR system good enough?
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CTC Loss Function
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» Total Score of one path

the sum of scores at different time steps
» The probability of any transcript

the sum of probabilities of all paths
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Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." Proceedings of the 23rd
international conference on Machine learning. ACM, 2006.



http://www.cs.toronto.edu/~graves/icml_2006.pdf

Deep Speech 1.0

® N X =(x1,X9, ., X¢)
® I P(c|X)
c; €{a,b,c, ...,z space, apostrophe, blank}
® [oss function: CTC
® Jl|%:: Nesterov's Accelerated gradient (NAG)
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Hannun, Awni, et al. "Deep speech: Scaling up end-to-end speech recognition." arXiv preprint arXiv:1412.5567 (2014).



https://arxiv.org/pdf/1412.5567.pdf
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® | oss function: CTC

Collobert, Ronan, Christian Puhrsch, and Gabriel Synnaeve. "Wav2letter: an end-to-end convnet-based speech recognition system." arXiv preprint
arXiv:1609.03193 (2016).

Liptchinsky, V., G. Synnaeve, and R. Collobert. "Letterbased speech recognition with gated convnets." CoRR, vol. abs/1712.09444 1 (2017).



https://arxiv.org/pdf/1609.03193.pdf
https://arxiv.org/pdf/1712.09444.pdf
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Seq2Seq with attention
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1. Chan, William, et al. "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition." Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016.

2. Chiu, Chung-Cheng, et al. "State-of-the-art speech recognition with sequence-to-sequence models." 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018.



https://arxiv.org/pdf/1712.01769.pdf
https://arxiv.org/pdf/1508.01211.pdf
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From English to Mandarin on
Voice Search Task

1. Structure

» character Embedding
2. Training

» L2 regularization

» Gaussian weight noise
» Frame skipping

» Attention smoothing

Shan, Changhao, et al. "Attention-based end-to-end speech recognition on voice search." 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2018.



http://lxie.npu-aslp.org/papers/2018ICASSP-SCH.pdf

Initial

state

encoder decoder

(h1» h,, m’hT) — BLSTM (xy, X3, ..., x2T~1) P(y;|X,yi_1, ...,y1 ) = CharacterDist(s;, c;)
Si = DeCOdeRNN([yi—li Ci—l]r Si—l)
c; = AttentionContext(s;, H)



Baidu ASR GAN

CE Loss
Discriminator Loss [ Attention Decoder }
[ Clean embedding ] [ Noisy embedding ]
[ Encoder } [ Encoder ]
Augmentation
Clean Audio --------=mmmmmmmmmmmmmmmmmeoeoee Noisy Audio

Sriram, Anuroop, et al. "Robust speech recognition using generative adversarial networks." 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2018.



https://arxiv.org/pdf/1711.01567.pdf
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Rao, Kanishka, Hasim Sak, and Rohit Prabhavalkar. "Exploring architectures, data and units for streaming end-to-end speech recognition with
RNN-transducer." Automatic Speech Recognition and Understanding Workshop (ASRU), 2017 IEEE. IEEE, 2017.



https://arxiv.org/pdf/1801.00841.pdf
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Graves, Alex, et al. "Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks." Proceedings of
the 23rd international conference on Machine learning. ACM, 2006.

Graves, Alex. "Sequence transduction with recurrent neural networks." arXiv preprint arXiv:1211.3711 (2012).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint
arXiv:1409.0473 (2014).



https://arxiv.org/pdf/1409.0473.pdf
https://mediatum.ub.tum.de/doc/1292048/file.pdf
https://arxiv.org/pdf/1211.3711.pdf
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Alibaba-FSMN

Output layer Y.
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Zhang, Shiliang, et al. "Feedforward sequential memory networks: A new structure to learn long-term dependency." arXiv preprint arXiv:1512.08301 (2015).

Zhang, Shiliang, et al. "Compact Feedforward Sequential Memory Networks for Large Vocabulary Continuous Speech Recognition." INTERSPEECH. 2016.

Zhang, Shiliang, et al. "Deep-FSMN for Large Vocabulary Continuous Speech Recognition." arXiv preprint arXiv:1803.05030 (2018).



https://www.isca-speech.org/archive/Interspeech_2016/pdfs/0121.PDF
https://arxiv.org/pdf/1803.05030.pdf
https://arxiv.org/pdf/1512.08301.pdf
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adaptive training) Very deep CNN

Tan, Tian, et al. "Adaptive very deep convolutional residual network for noise robust speech recognition." IEEE/ACM Transactions on Audio, Speech,
and Language Processing26.8 (2018): 1393-1405.



https://speechlab.sjtu.edu.cn/papers/tt123-tan-tasl18.pdf
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