Experiment conclusions

Firstly I have to admit that I made a stupid mistake that when I want to resample the first 256*6 model's training data, I wrongly choose the 1280*6 mdl to evaluate the WER of the training data. I didn't realize it until I've done training all the model. So I have to change my basic thought and have a different Comparison. But there still exists some useful information though this experiment has deviation with my basic thought. The new structure looks like below.

Several results

	2048*6	Ensemble	1280*6(1)	256*6	256*6	256*
	(1280+256*3)	1+2+3+4		(2)	(3)	6(4)
bd_tgpr_dev	9.85	10.53	10.37	17.21	18.80	20.68
93						
bd_tgpr_dev	8.95	9.34	9.21	15.55	16.88	18.36
93_fg						
bd_tgpr_eval	6.31	6.63	6.50	12.65	13.72	15.12
92						
bd_tgpr_eval	5.28	5.28	5.46	10.77	12.26	13.22
92_fg						
tg_dev93	11.63	11.94	11.85	18.80	20.11	21.62
tg_eval92	7.67	8.40	8.22	14.11	15.17	16.39
tgpr_dev93	12.38	12.63	12.67	19.19	20.62	21.86
tgpr_eval92	8.86	8.86	8.86	14.74	15.91	17.21

1. It seems that ensemble model cannot do better than first 1280*6 model not to say 2048*6. maybe Adaboost can do better when NN have the same representation ability in other words these models have to have same structure.

- 2. The more complex data model learns on , the worse result they will have. That's as expected cause maybe harder training data really confused them.
- 3. When model trains on resampled data , they do better on test data. For example, model-2's WER on training data is 33.82% and model-3's WER on training data is 44.7%. This is

really interesting cause model usually cannot do well on test set as they do on training set. Maybe they really learned some information.

Confusions

- The weight for each model is 0.86778, 0.05940, 0.04139, 0.03143 and they sum up to be
 I think it's more reasonable to weight the softmax layer before log. However, it do much better to directly weight the log-softmax layer which is unexpected.
- 2. The really log-likelihood for each model is posterior * prior and the prior is based on the training data. However training data for each model is different, I don't know whether it influence the results.