
END-TO-END ATTENTION-BASED LARGE VOCABULARY SPEECH RECOGNITION

Dzmitry Bahdanau∗, Jan Chorowski†, Dmitriy Serdyuk‡, Philémon Brakel‡ and Yoshua Bengio‡1

∗Jacobs University Bremen
†University of Wrocław
‡ Université de Montréal

1 CIFAR Fellow

ABSTRACT
Many of the current state-of-the-art Large Vocabulary Con-
tinuous Speech Recognition Systems (LVCSR) are hybrids
of neural networks and Hidden Markov Models (HMMs).
Most of these systems contain separate components that deal
with the acoustic modelling, language modelling and se-
quence decoding. We investigate a more direct approach in
which the HMM is replaced with a Recurrent Neural Net-
work (RNN) that performs sequence prediction directly at the
character level. Alignment between the input features and
the desired character sequence is learned automatically by an
attention mechanism built into the RNN. For each predicted
character, the attention mechanism scans the input sequence
and chooses relevant frames. We propose two methods to
speed up this operation: limiting the scan to a subset of
most promising frames and pooling over time the information
contained in neighboring frames, thereby reducing source
sequence length. Integrating an n-gram language model into
the decoding process yields recognition accuracies similar to
other HMM-free RNN-based approaches.

Index Terms— neural networks, LVCSR, attention,
speech recognition, ASR

1. INTRODUCTION

Deep neural networks have become popular acoustic mod-
els for state-of-the-art large vocabulary speech recognition
systems (Hinton et al., 2012a). However, in these systems
most of the other components, such as Hidden Markov Mod-
els (HMMs), Gaussian Mixture Models (GMMs) and n-gram
language models, are the same as in their predecessors. These
combinations of neural networks and statistical models are
often referred to as hybrid systems. In a typical hybrid sys-
tem, a deep neural network is trained to replace the Gaussian
Mixture Model (GMM) emission distribution of an HMM by
predicting for each input frame the most likely HMM state.
These state labels are obtained from a trained GMM-HMM
system that has been used to perform forced alignment. In
other words, a two-stage training process is required, in which
the older GMM approach is still used as a starting point. An

obvious downside of this hybrid approach is that the acoustic
model is not directly trained to minimize the final objective
of interest. Our aim was to investigate neural LVCSR models
that can be trained with a more direct approach by replacing
the HMMs with a Attention-based Recurrent Sequence Gen-
erators (ARSG) such that they can be trained end-to-end for
sequence prediction.

Recently, some work on end-to-end neural network
LVCSR systems has shown promising results. A neural
network model trained with Connectionist Temporal Clas-
sification (CTC) (Graves et al., 2006) achieved promising
results on the Wall Street Journal corpus (Graves and Jaitly,
2014; Hannun et al., 2014b). A similar setup was used to
obtain state-of-the-art results on the Switchboard task as well
(Hannun et al., 2014a). Both of these models were trained to
predict sequences of characters and were later combined with
a word level language model. Furthermore, when the lan-
guage model was implemented as a CTC-specific Weighted
Finite State Transducer, decoding accuracies competitive
with DNN-HMM hybrids were obtained (Miao et al., 2015).

At the same time, a new direction of neural network re-
search has emerged that deals with models that learn to focus
their “attention” to specific parts of their input. Systems of
this type have shown very promising results on a variety of
tasks including machine translation (Bahdanau et al., 2015),
caption generation (Xu et al., 2015), handwriting synthesis
(Graves, 2013), visual object classification (Mnih et al., 2014)
and phoneme recognition (Chorowski et al., 2014, 2015).

In this work, we investigate the application of an Attention-
based Recurrent Sequence Generator (ARSG) as a part of an
end-to-end LVCSR system. We start from the system pro-
posed in (Chorowski et al., 2015) and make the following
contributions:

1. We show how training on long sequences can be made
feasible by limiting the area explored by the attention
to a range of most promising locations. This reduces
the total training complexity from quadratic to linear,
largely solving the scalability issue of the approach.
This has already been proposed (Chorowski et al.,
2015) under the name “windowing”, but was used only

ar
X

iv
:1

50
8.

04
39

5v
1

 [
cs

.C
L

]
 1

8
A

ug
 2

01
5

at the decoding stage in that work.

2. In the spirit of he Clockwork RNN (Koutnik et al.,
2014) and hierarchical gating RNN (Chung et al.,
2015), we introduce a recurrent architecture that suc-
cessively reduces source sequence length by pooling
frames neighboring in time. 1

3. We show how a character-level ARSG and n−gram
word-level language model can be combined into a
complete system using the Weighted Finite State Trans-
ducers (WFST) framework.

2. ATTENTION-BASED RECURRENT SEQUENCE
GENERATORS FOR SPEECH

The system we propose is a neural network that can map se-
quences of speech frames to sequences of characters. While
the whole system is differentiable and can be trained directly
to perform the task at hand, it can still be divided into dif-
ferent functional parts that work together to learn how to en-
code the speech signal into a suitable feature representation
and to decode this representation into a sequence of charac-
ters. We used RNNs for both the encoder and decoder2 parts
of the system. The decoder combines an RNN and an atten-
tion mechanism into an Attention-based Recurrent Sequence
Generator that is able to learn the alignment between its in-
put and its output. Therefore, we will first discuss RNNs,
and subsequently, how they can be combined with attention
mechanisms to perform sequence alignment.

2.1. Recurrent Neural Networks

There has been quite some research into Recurrent Neural
Networks (RNNs) for speech recognition (Robinson et al.,
1996; Lippmann, 1989) and this can probably be explained
to a large extent by the elegant way in which they can deal
with sequences of variable length.

Given a sequence of feature vectors (x1, · · · ,xT), a stan-
dard RNN computes a corresponding sequence of hidden state
vectors (h1, · · · ,hT) using

ht = g(Wxhxt +Whhht−1 + bh), (1)

where Wxh and Whh are matrices of trainable parameters
that represent the connection weights of the network and bh

is a vector of trainable bias parameters. The function g(·) is
often a non-linear squashing function like the hyperbolic tan-
gent and applied element-wise to its input. The hidden states
can be used as features that serve as inputs to a layer that per-
forms a task like classification or regression. Given that this

1This mechanism has been recently independently proposed in (Chan
et al., 2015).

2The word “decoder” refers to a network in this context, not to the final
recognition algorithm.

output layer and the objective to optimize are differentiable,
the gradient of this objective with respect to the parameters of
the network can be computed with backpropagation through
time. Like feed-forward networks, RNNs can process discrete
input data by representing it as 1-hot-coding feature vectors.

An RNN can be used as a statistical model over sequences
of labels. For that, it is trained it to predict the probability of
the next label conditioned on the part of the sequence it has
already processed. If (y1, · · · , yT) is a sequence of labels, an
RNN can be trained to provide the conditional distribution the
next label using

p(yt|y1, · · · , yt−1) = p(yt|ht)

= softmax(Whlht + bl),

where Whl is a matrix of trainable connection weights, bl is
a vector of bias parameters and softmaxi(a) = exp(ai)∑

j exp(aj)
.

The likelihood of the complete sequence is now given by
p(y1)

∏T
t=2 p(yt|y1, · · · , yt−1). This distribution can be used

to generate sequences by either sampling from the distribu-
tion p(yt|y1, · · · , yt−1) or choosing the most likely labels it-
eratively.

Equation 1 defines the simplest RNN, however in prac-
tice usually more advanced equations define the dependency
of ht on ht−1. Famous examples of these so-called recur-
rent transitions are Long Short Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho
et al., 2014), which are both designed to better handle long-
term dependencies. In this work we use GRU for it has a sim-
pler architecture and is easier to implement efficiently. The
hidden states ht are computed using the following equations:

zt = σ(Wxzxt +Uhzht−1),

rt = σ (Wxrxt +Uhrht−1) ,

h̃t = tanh (Wxhxt +Urh(rt ⊗ ht−1)) ,

ht = (1− zt)ht−1 + zth̃t,

where h̃t are candidate activations, zt and rt are update and
reset gates respectively. The symbol⊗ signifies element-wise
multiplication.

To obtain a model that uses information from both future
frames and past frames, one can pass the input data through
two recurrent neural networks that run in opposite directions
and concatenate their hidden state vectors. Recurrent neu-
ral network of this type are often referred to as bidirectional
RNNs.

Finally, it has been shown that better results for speech
recognition tasks can be obtained by stacking multiple lay-
ers of recurrent neural networks on top of each other (Graves
et al., 2013). This can simply be done by treating the se-
quence of state vectors (h1, · · · ,hT) as the input sequence
for the next RNN in the pile. Figure 1 shows an example of
two bidirectional RNNs that have been stacked on top of each
other to construct a deep architecture.

h2
1 h2

2 h2
3 h2

4 h2
5 h2

6

ĥ2
1 ĥ2

2 ĥ2
3 ĥ2

4 ĥ2
5 ĥ2

6

ĥ1
1 ĥ1

2 ĥ1
3 ĥ1

4 ĥ1
5 ĥ1

6

h1
1 h1

2 h1
3 h1

4 h1
5 h1

6

x1 x2 x3 x4 x5 x6

Fig. 1. Two Bidirectional Recurrent Neural Networks stacked
on top of each other.

h2
1 h2

2 h2
3

ĥ2
1 ĥ2

2 ĥ2
3

ĥ1
1 ĥ1

2 ĥ1
3 ĥ1

4 ĥ1
5 ĥ1

6

h1
1 h1

2 h1
3 h1

4 h1
5 h1

6

x1 x2 x3 x4 x5 x6

Fig. 2. A pooling over time BiRNN: the upper layer runs
twice slower then the lower one. It can average, or subsample
(as shown in the figure) the hidden states of the layer below
it.

2.2. Encoder-Decoder Architecture

Many challenging tasks involve inputs and outputs which may
have variable length. Examples are machine translation and
speech recognition, where both input and output have variable
length; and image caption generation, where the captions may
have variable lengths.

Encoder-decoder networks are often used to deal with
variable length input and output sequences (Cho et al., 2014;
Sutskever et al., 2014). The encoder is a network that trans-
forms the input into an intermediate representation. The
decoder is typically an RNN that uses this representation in
order to generate the outputs sequences as described in 2.1.

In this work, we use a deep BiRNN as an encoder. Thus,
the representation is a sequence of BiRNN state vectors
(h1, . . . ,hL). For a standard deep BiRNN, the sequence
(h1, . . . ,hL) is as long as the input of the bottom-most layer,
which in the context of speech recongnition means one hi for
every 10ms of the recordings. We found that for our decoder

(see 2.3) such representation is overly precise and contains
much redundant information. This led us to add pooling
between BiRNN layers as illustrated by Figure 2.

2.3. Attention-equipped RNNs

The decoder network in our system is an Attention-based Re-
current Sequence Generator (ARSG). This subsection intro-
duces ARSGs and explains the motivation behind our choice
of an ARSG for this study.

While RNNs can process and generate sequential data, the
length of the sequence of hidden state vectors is always equal
to the length of the input sequence. One can aim to learn
the alignment between these two sequences to model a distri-
bution p(y1, · · · , yT |h1, · · · ,hL) for which there is no clear
functional dependency between T and L.

An ARSG produces an output sequence (y1, · · · , yT) one
element at a time, simultaneously aligning each generated el-
ement to the encoded input sequence (h1, · · · ,hL). It is com-
posed of an RNN and an additional subnetwork called ‘atten-
tion mechanism’. The attention selects the temporal locations
over the input sequence that should be used to update the hid-
den state of the RNN and to make a prediction for the next
output value. Typically, the selection of elements from the in-
put sequence is a weighted sum ct =

∑
l αtlhl, where αtl are

called the attention weights and we require that αtl ≥ 0 and
that

∑
l αtl = 1. See Figure 3 for a schematic representation

of an ARSG.
The attention mechanism used in this work is an improved

version of the hybrid attention with convolutional features
from (Chorowski et al., 2015), which is described by the fol-
lowing equations:

F = Q ∗αt−1 (2)

etl = w> tanh(Wst−1 +Vhl +Ufl + b) (3)

αtl = exp(etl)

/
L∑

l=1

exp(etl) . (4)

where W, V, U, Q are parameter matrices, w and b are pa-
rameter vectors, ∗ denotes convolution, st−1 stands for the
previous state of the RNN component of the ARSG. We ex-
plain how it works starting from the end: (4) shows how the
weights αtl are obtained by normalizing the scores etl. As il-
lustrated by (3), the score depends on the previous state st−1,
the content in the respective location hl and the vector of so-
called convolutional features fl. The name “convolutional”
comes from the convolution along the time axis used in (2) to
compute the matrix F that comprises all feature vectors fl.

Simply put, the attention mechanism described above
combines information from three sources to decide where to
focus at the step t: the decoding history contained in st−1,
the content in the candidate location hl and the focus from
the previous step described by attention weights αt−1. It is
shown in (Chorowski et al., 2015) that making the attention

location-aware, that is using αt−1 in the equations defining
αt, is crucial for reliable behaviour on long input sequences.

A disadvantage of the approach from (Chorowski et al.,
2015) is the complexity of the training procedure, which is
O(LT) since weights αtl have to be computed for all pairs
of input and output positions. The same paper showcases a
windowing approach that reduces the complexity of decod-
ing to O(L + T). In this work we apply the windowing
at the training stage as well. Namely, we constrain the at-
tention mechanism to only consider positions from the range
(mt−1 − wl, . . . ,mt−1 + wr), where mt−1 is the median of
αt−1, interpreted in this context as a distribution. The values
wl and wr define how much the window expands to the left
and to the right respectively. This modification makes training
significantly faster.

Apart from the speedup it brings, windowing can be also
very helpful for starting the training procedure. From our ex-
perience, it becomes increasingly harder to train an ARSG
completely from scratch on longer input sequences. We found
that providing a very rough estimate of the desired align-
ment at the early training stage is an effective way to quickly
bring network parameters in a good range. Specifically, we
forced the network to only choose from positions in the range
Rt = (smin+tvmin, . . . , smax+tvmax). The numbers smin,
smax, vmin, vmax were roughly estimated from the training
set so that the number of leading silent frames for training ut-
terances were between smin and smax and so that the speaker
speed, i.e. the ratio between the transcript and the encoded
input lengths, were between vmin and vmax. We aimed to
make the windows Rt as narrow as possible, while keeping
the invariant that the character yt was pronounced within the
window Rt. The resulting sequence of windows is quickly
expanding, but still it was sufficient to quickly move the net-
work out of the random initial mode, in which it had often
aligned all characters to a single location in the audio data.
We note, that the median-centered windowing could not be
used for this purpose, since it relies on the quality of the pre-
vious alignment to define the window for the new one.

3. INTEGRATION WITH A LANGUAGE MODEL

Although an ARSG by construction implicitly learns how an
output symbol depends on the previous ones, the transcrip-
tions of the training utterances are typically insufficient to
learn a high-quality language model. For this reason, we
investigate how an ARSG can be integrated with a language
model. The main challenge is that in speech recognition
word-based language models are used, whereas our ARSG
models a distribution over character sequences.

We use the Weighted Finite State Transducer (WFST)
framework (Mohri et al., 2002; Allauzen et al., 2007) to build
a character-level language model from a word-level one. A
WFST is a finite automaton, whose transitions have weight
and input and output labels. It defines a cost of transducing

Fig. 3. Schematic representation of the Attention-based Re-
current Sequence Generator. At each time step t, an MLP
combines the hidden state st−1 with all the input vectors hl

to compute the attention weights αtl. Subsequently, the new
hidden state st and prediction for output label yt can be com-
puted.

an input sequence into an output sequence by considering
all pathes with corresponding sequences of input and output
labels. The composition operation can be used to combine
FSTs that define different levels of representation, such as
characters and words in our case.

We compose the language model Finite State Transducer
(FST) G with a lexicon FST L that simply spells out the
letters of each word. More specifically, we build an FST
T = min(det(L ◦ G)) to define the log-probability for char-
acter sequences. We push the weights of this FST towards the
starting state to help hypothesis pruning during decoding.

For decoding we look for a transcript y that minimizes
the cost L which combines the encoder-decoder (ED) and the
language model (LM) outputs as follows:

L = − log pED(y|x)− β log pLM (y)− γT (5)

where β and γ are tunable parameters. The last term γT is
important, because without it the LM component dominates
and the cost L is minimized by too short sequences. We note
that the same criterion for decoding was proposed in (Hannun
et al., 2014b) for a CTC network.

Integrating an FST and an ARSG in a beam-search decod-
ing is easy because they share the property that the current
state depends only on the previous one and the input symbol.
Therefore one can use a simple left-to-right beam search algo-
rithm similar to the one described in (Sutskever et al., 2014)
to approximate the value of y that minimizes L.

The determinization of the FST becomes impractical for
moderately large FSTs, such as the trigram model shipped
with the Wall Street Journal corpus (see Subsection 5.1). To
handle non-deterministic FSTs we assume that its weights

are in the logarithmic semiring and compute the total log-
probability of all FST paths corresponding to a character pre-
fix from the beam. This probability can be quickly recom-
puted when a new character is added to the prefix.

4. RELATED WORK

A popular method to train networks to perform sequence
prediction is Connectionist Temporal Classification (Graves
et al., 2006). It has been used with great success for both
phoneme recognition (Graves et al., 2013) and character-
based LVCSR (Graves and Jaitly, 2014; Hannun et al.,
2014b,a; Miao et al., 2015). CTC allows recurrent neural
networks to predict sequences that are shorter than the input
sequence by summing over all possible alignments between
the output sequence and the input of the CTC module. This
summation is done using dynamic programming in a way
that is similar to the forward and backward passes that are
used to do inference in an HMM. In the CTC approach, out-
put labels are conditionally independent given the alignment
and the output sequences. In the context of speech recogni-
tion, this means that a CTC network lacks a language model,
which greatly boosts the system performance when added to
a trained CTC network (Hannun et al., 2014b; Miao et al.,
2015).

An extension of CTC is the RNN Transducer which com-
bines two RNNs into a sequence transduction system (Graves,
2012; Boulanger-Lewandowski et al., 2013). One network is
similar to a CTC network and runs at the same time-scale as
the input sequence, while a separate RNN models the prob-
ability of the next label output label conditioned on the pre-
vious ones. Like in CTC, inference is done with a dynamic
programming method similar to the backward-forward algo-
rithm for HMMs, but taking into account the constraints de-
fined by both of the RNNs. Unlike CTC, RNN transduction
systems can also generate output sequences that are longer
than the input. RNN Transducers have led to state-of-the-art
results in phoneme recognition on the TIMIT dataset (Graves
et al., 2013) which were recently matched by an ASRG net-
work (Chorowski et al., 2015).

The RNN Transducer and ARSG approaches are roughly
equivalent in their capabilities. In both approaches an implicit
language model is learnt jointly with the rest of the network.
The main difference between the approaches is that in ARSG
the alignment is explicitly computed by the network, as op-
posed to dealing with a distribution of alignments in the RNN
Transducer. We hypothesize that this difference might have a
major impact on the further development of these methods.

Finally, we must mention two very recently published
works that partially overlap with the content of this paper.
In (Chan et al., 2015) Encoder-Decoder for character-based
recognition, with the model being quite similar to ours. In
particular, in this work pooling between the BiRNN layers
is also proposed. Also, in (Miao et al., 2015) using FSTs

to build a character-level model from an n-gram model is
advocated. We note, that the research described in this paper
was carried independently and without communication with
the authors of both aforementioned works.

5. EXPERIMENTS

5.1. Data

We trained and evaluated our models on the Wall Street Jour-
nal (WSJ) corpus (available at the Linguistic Data Consor-
tium as LDC93S6B and LDC94S13B). Training was done on
the 81 hour long SI-284 set of about 37K sentences. As in-
put features, we used 40 mel-scale filterbank coefficients to-
gether with the energy. These 41 dimensional features were
extended with their first and second order temporal deriva-
tives to obtain a total of 123 feature values per frame. Evalu-
ation was done on the “eval92” evaluation set. Hyperparame-
ter selection was performed on the “dev93” set. For language
model integration we have used the 20K closed vocabulary
setup and the bigram and trigram language model that were
provided with the data set. We use the same text preprocess-
ing as in (Hannun et al., 2014b), leaving only 32 distinct la-
bels: 26 characters, apostrophe, period, dash, space, noise and
end-of-sequence tokens.

5.2. Training

Our model used 4 layers of 250 forward + 250 backward GRU
units in the encoder, with the top two layers reading every
second of hidden states of the network below it (see Figure
2). Therefore, the encoder reduced the utterance length by
the factor of 4. A centered convolution filter of width 200
was used in the attention mechanism to extract a single feature
from the previous step alignment as described in (4).

The AdaDelta algorithm (Zeiler, 2012) with gradient clip-
ping was used for optimization. We initialized all the weights
randomly from an isotropic Gaussian distribution with vari-
ance 0.1.

We used a rough estimate of the proper alignment for the
first training epoch as described in Section 2.3. After that the
training was restarted with the windowing described in the
same section. The window parameters were wL = wR =
100, which corresponds to considering a large 8 second long
span of audio data at each step, taking into account the pool-
ing done between layers. Training with the AdaDelta hyper-
parameters ρ = 0.95, ε = 10−8 was continued until log-
likelihood stopped improving. Finally, we annealed the best
model in terms of log-likelihood by restarting the training
with ε = 10−10 and ε = 10−12 respectively.

We found regularization necessary for the best perfor-
mance. The column norm constraint 1 was imposed on all
weight matrices (Hinton et al., 2012b). This corresponds to
constraining the norm of the weights of all the connections
incoming to a unit.

Table 1. Character Error Rate (CER) and Word Error Rate
(WER) scores for our setup on the Wall Street Journal Corpus
in comparison with other results from the literature. Note that
our results are not directly comparable with those of networks
predicting phonemes instead of characters, since phonemes
are easier targets.

Model CER WER
Encoder-Decoder 6.7 19.3
Encoder-Decoder + bigram LM 5.4 13.0
Encoder-Decoder + trigram LM 4.8 11.3
Graves and Jaitly (2014)

CTC 9.2 30.1
CTC, expected transcription loss 8.4 27.3

Hannun et al. (2014)
CTC 10.0 35.8
CTC + bigram LM 5.7 14.1

Miao et al. (2015),
CTC for phonemes + lexicon - 26.9
CTC for phonemes + trigram LM - 7.3
CTC + trigram LM - 9.0

5.3. Decoding and Evaluation

As explained in Section 3, we used beam search to minimize
the combined cost L defined by (5). We finished when k ter-
minated sequences cheaper than any non-terminated sequence
in the beam were found. A sequence was considered termi-
nated when it ended with the special end-of-sequence token,
which the network was trained to generate in the end of each
transcript.

To measure the best performance we used the beam size
200, however this brought us only ≈ 10% relative improve-
ment over beam size 10. We used parameter settings α = 0.5
and γ = 1 with a language model and γ = 0.1 without one.
It was necessary to use an asymmetric window for the atten-
tion when decoding with large γ. More specifically, we re-
duced wL to 10. Without this trick, the cost L could be in-
finitely minimized by looping across the input utterance, for
the penalty for jumping back in time included in log p(y|x)
was not high enough.

5.4. Results

Results of our experiments are gathered in Table 5.4. Our
model shows performance superior to that of CTC systems
when no external language model is used. The improvement
from adding an external language model is however much
larger for CTC-based systems. The final peformance of our
model is better than the one reported in (Hannun et al., 2014b)
(13.0% vs 14.1%), but worse than the the one from (Miao
et al., 2015) (11.3% vs 9.0%) when the same language mod-
els are used.

6. DISCUSSION

A major difference between the CTC and ARSG approaches
is that a language model is implicitly learnt in the latter. In-
deed, one can see that an RNN sequence model as explained
in 2.1 is literally contained in an ARSG as a subnetwork. We
believe that this is the reason for the greater performance of
the ARSG-based system when no external LM is used. How-
ever, this implicit language model was trained on a relatively
small corpus of WSJ transcripts containing less than 4 million
characters. It has been reported that RNNs overfit on corpora
of such size (Graves, 2013) and in our experiments we had to
combat overfitting as well. Using the weight clipping brought
a consistent performance gain but did not change the big pic-
ture. For these reasons, we hypothesize that overfitting of the
internal RNN language model was one of the main reasons
why our model did not reach the performance level reported
in (Miao et al., 2015), where a CTC network is used.

That being said, we treat it as an advantage of the ARSG
that it supports joint training of a language model with the
rest of the network. For one, WSJ contains approximately
only 80 hours of training data, and overfitting might be less
of an issue for corpora containing hundreds or even thousands
hours of annotated speech. For two, an RNN language model
trained on a large text corpus could be integrated in an ARSG
from the beginning of training by using the states of this lan-
guage model as an additional input of the ARSG. We suppose
that this would block the incentive of memorizing the training
utterances, and thereby reduce the overfitting. In addition, no
extra n-gram model would be required. We note that a similar
idea has been already proposed in (Gulcehre et al., 2015) for
machine translation.

Finally, trainable integration with an n-gram language
model could also be investigated.

6.1. Conclusion

In this work we showed how an Encoder-Decoder network
with an attention mechanism can be used to build a LVCSR
system. The resulting approach is significantly simpler than
the dominating HMM-DNN one, with fewer training stages,
much less auxiliary data and less domain expertise involved.
Combined with a trigram language model our system shows
decent, although not yet state-of-the-art performance.

We present two methods to improve the computational
complexity of the investigated model. First, we propose pool-
ing over time between BiRNN layers to reduce the length of
the encoded input sequence. Second, we propose to use win-
dowing during training to ensure that the decoder network
performs a constant number of operations for each output
character. Together these two methods facilitate application
of attention-based models to large-scale speech recognition.

Unlike CTC networks, our model has an intrinsic language-
modeling capability. Furthermore, it has a potential to be

trained jointly with an external language model. Investiga-
tions in this direction are likely to be a part of our future
work.

Acknowledgments

The experiments were conducted using Theano (Bergstra
et al., 2010; Bastien et al., 2012), Blocks and Fuel (van
Merriënboer et al., 2015) libraries.

The authors would like to acknowledge the support of
the following agencies for research funding and computing
support: National Science Center (Poland), NSERC, Cal-
cul Québec, Compute Canada, the Canada Research Chairs
and CIFAR. Bahdanau also thanks Planet Intelligent Systems
GmbH and Yandex.

References
Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri,

M. (2007). OpenFst: A general and efficient weighted
finite-state transducer library. In Holub, J. and Žďárek,
J., editors, Implementation and Application of Automata,
number 4783 in Lecture Notes in Computer Science, pages
11–23. Springer Berlin Heidelberg.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural ma-
chine translation by jointly learning to align and translate.
In International Conference on Learning Representations.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfel-
low, I. J., Bergeron, A., Bouchard, N., and Bengio, Y.
(2012). Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning NIPS
Workshop.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and Ben-
gio, Y. (2010). Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Com-
puting Conference (SciPy).

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P.
(2013). High-dimensional sequence transduction. In
Acoustics, Speech and Signal Processing (ICASSP), IEEE
International Conference on, pages 3178–3182. IEEE.

Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. (2015). Listen,
attend and spell. arXiv:1508.01211 [cs, stat].

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase rep-
resentations using RNN encoder-decoder for statistical ma-
chine translation. In Empirical Methods of Natural Lan-
guage Processing.

Chorowski, J., Bahdanau, D., Cho, K., and Bengio, Y. (2014).
End-to-end continuous speech recognition using attention-
based recurrent NN: First results. arXiv:1412.1602 [cs,
stat].

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Ben-
gio, Y. (2015). Attention-based models for speech recogni-
tion. arXiv:1506.07503 [cs, stat].

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2015).
Gated feedback recurrent neural networks. In Proceedings
of The 32-nd International Conference on Machine Learn-
ing.

Graves, A. (2012). Sequence transduction with recurrent neu-
ral networks. arXiv preprint arXiv:1211.3711.

Graves, A. (2013). Generating sequences with recurrent neu-
ral networks. arXiv:1308.0850.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber,
J. (2006). Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural
networks. In ICML-06.

Graves, A. and Jaitly, N. (2014). Towards end-to-end speech
recognition with recurrent neural networks. In Proceedings
of the 31st International Conference on Machine Learning
(ICML-14), pages 1764–1772.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech
recognition with deep recurrent neural networks. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 6645–6649. IEEE.

Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H.-
C., Bougares, F., Schwenk, H., and Bengio, Y. (2015). On
using monolingual corpora in neural machine translation.
arXiv preprint arXiv:1503.03535.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,
Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates,
A., et al. (2014a). Deepspeech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567.

Hannun, A. Y., Maas, A. L., Jurafsky, D., and Ng, A. Y.
(2014b). First-pass large vocabulary continuous speech
recognition using bi-directional recurrent dnns. arXiv
preprint arXiv:1408.2873.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. (2012a). Deep neural networks for acous-
tic modeling in speech recognition: The shared views of
four research groups. Signal Processing Magazine, IEEE,
29(6):82–97.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2012b). Improving neural net-
works by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014).
A clockwork RNN. In Proceedings of The 31st Inter-
national Conference on Machine Learning, pages 1863–
1871.

Lippmann, R. P. (1989). Review of neural networks for
speech recognition. Neural computation, 1(1):1–38.

Miao, Y., Gowayyed, M., and Metze, F. (2015). EESEN:
End-to-end speech recognition using deep RNN models
and WFST-based decoding. arXiv:1507.08240 [cs].

Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent mod-
els of visual attention. In Advances in Neural Information
Processing Systems, pages 2204–2212.

Mohri, M., Pereira, F., and Riley, M. (2002). Weighted finite-
state transducers in speech recognition. Computer Speech
& Language, 16(1):69–88.

Robinson, T., Hochberg, M., and Renals, S. (1996). The use
of recurrent neural networks in continuous speech recogni-
tion. In Automatic speech and speaker recognition, pages
233–258. Springer.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In Advances in
Neural Information Processing Systems.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk,
D., Warde-Farley, D., Chorowski, J., and Bengio, Y.
(2015). Blocks and fuel: Frameworks for deep learning.
arXiv:1506.00619 [cs, stat].

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhut-
dinov, R., Zemel, R., and Bengio, Y. (2015). Show, attend
and tell: Neural image caption generation with visual atten-
tion. In Proceedings of The 32-nd International Conference
on Machine Learning.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

	1 Introduction
	2 Attention-based Recurrent Sequence Generators for Speech
	2.1 Recurrent Neural Networks
	2.2 Encoder-Decoder Architecture
	2.3 Attention-equipped RNNs

	3 Integration with a Language Model
	4 Related Work
	5 Experiments
	5.1 Data
	5.2 Training
	5.3 Decoding and Evaluation
	5.4 Results

	6 Discussion
	6.1 Conclusion

