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ABSTRACT 

Unlike RBG cameras, thermal cameras perform well under very low lighting conditions and can capture information 

beyond the human visible spectrum. This provides many advantages for security and surveillance applications.  However, 

performing face recognition tasks in the thermal domain is very challenging given the limited visual information embedded 

in thermal images and the inherent similarities among facial heat maps. Attempting to perform recognition across 

modalities, such as recognizing a face captured in the thermal domain given the corresponding visible light domain ground 

truth database or vice versa is also a challenge. In this paper, a Thermal to RGB Generative Adversarial Network (TR-

GAN) to automatically synthesize face images captured in the thermal domain, to their RBG counterparts, with a goal of 

reducing current inter-domain gaps and significantly improving cross-modal facial recognition capabilities is proposed. 

Experimental results on the TUFTS Face Dataset using the VGG-Face recognition model without retraining, demonstrates 

that performing image translation with the proposed TR-GAN model almost doubles the cross-modal recognition accuracy 

and also performs better than other state-of-the-art GAN models on the same task. The generator in our network uses a U-

NET like architecture with cascaded-in-cascaded blocks to reuse features from earlier convolutions, which helps generate 

high quality images. To further guide the generator to synthesize images with fine details, we optimize a training loss as 

the weighted sum of the perceptual, adversarial, and cycle-consistent loss. Simulation results demonstrate that the proposed 

model generates more realistic and more visually appealing images, with finer details and better reconstruction of intricate 

details such sunglasses and facial emotions, than similar GAN models.  

Keywords—Thermal spectrum, face recognition, Generative Adversarial Network, Thermal-RBG 

 

1. INTRODUCTION 

Face recognition is a relatively solved problem in the visible spectrum [1]–[7] but remains an open challenge in non-ideal 

situations such as low illumination, total darkness, and thick smoke, haze or fog. In such non-ideal environmental 

conditions, information is often better captured in another domain such as the thermal or near-infrared domain. In thermal-

infrared images faces are distinguished from their backgrounds based on the radiation difference, which makes them more 

suitable for low lighting conditions. However, directly using state-of-the-art visible face recognition methods on the 

thermal imagery data does not produce a satisfactory performance. This problem is relatively due to several factors 

including: (1) drastically smaller amount of thermal imagery data collected compared to the RGB data; (2) thermal images 

typically have low resolution, poor texture, and higher image noise; (3) face recognition in the thermal infrared domain 

has not received as much attention, in contrast with recognition in the visible-spectrum imagery;  and (4) the inherent 

similarities among facial heat maps and skin color. Therefore, it is desirable to address these challenges by reducing these 

domain gaps and facilitate cross-modal recognition. The goal of this research is to effectively synthesize thermal face 

images to their visible RGB domain counterparts to help boost cross-modal recognition accuracy between thermal and 

visible spectrum domain. 

Recent advancements in Deep Convolutional Neural Networks have help enable sophisticated facial detection and 

recognition systems, which prove valuable in surveillance and security systems applications. Existing state-of-the-art facial 

recognition systems have demonstrated high-performance accuracy for automatic face detection and 

identification/recognition tasks [1]–[7]. These models have become so reliable and efficient that they can run on small 

devices such as mobile phones, for self-identification. Availability of large-scale face datasets such CelebA [8] and IMDB-

WIKI [9], helped foster the tremendous success of facial recognition systems such as VGG-Face [7]  and other modern 
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recognition systems that we know today. However, such datasets extensively focused on face data in the visible spectrum, 

hence models trained on such data significantly degrade in performance when tested on images in other modalities such 

as thermal domain. Unlike RBG cameras, thermal cameras can capture information in the dark by reading heat maps and 

as such facial features are encoded differently making recognition in such domain very hard. 

While many thermal face datasets are proposed [10]–[12], it is very difficult to train a face detection and recognition 

system from scratch to achieve comparable performance as existing systems on visible spectrum data. This is because it 

entails collecting and manually annotating millions of images and several days/ weeks of training, not to mention adequate 

time needed to fine-tune network architecture and corresponding hyperparameters.  

Generative Adversarial Networks-(GAN) on the other hand have gained attention in the computer vision research 

community since its introduction in 2014 by Ian Goodfellow et al [13], and is considered the most innovative idea in Deep 

Learning in recent decades [14]. GANs have greatly evolved over the years and have found applications in numerous 

domains spanning, image-to-image translation, super-resolutions, voice synthesis, video synthesis, classifications tasks, 

security applications, image generation, photo inpainting, video predictions text-to-image translation face aging, and much  

more [15].  

 

 

 

 

 

 

 

 

 

 

This work proposes a novel GAN model for automatically synthesizing face images in the thermal domain into their 

corresponding photorealistic images to address the above mentioned challenges. This unique GAN model will help achieve 

comparable performance result of existing face recognition systems without having to retrain the model on thermal images, 

hence addressing the current problem of efficiently recognizing faces captured in the thermal domain.  

The contributions of this work are as follows: 

a) Developing an improved GAN model suitable for translating face images from the thermal domain to their RGB 

equivalent. 

b) Improving the accuracy of face recognition in the thermal domain by using existing pretrained models without 

having retraining from scratch on thermal image data. 

c) Providing a normalized paired dataset with proper alignment and uniform sizing to facilitate training of similar 

intermodal image-to-image translation models. The proposed improved dataset is derived from the Tufts Face 

Dataset [11] and will be made available as contribution on the author’s Kaggle page. 

   

    

Visible light Thermal  NIR Computerized Sketch 

Figure 1: Samples images from 4 domains taken from the Tufts Face Database [11] 
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The rest of the paper is organized as follows: Section 2 discusses related work and the shortcomings of existing approaches; 

Section 3 presents the proposed TR-GAN network architecture and associated loss functions; Section 4 presents the 

experimental setups and discusses the results; and finally conclusion and future work are presented in Section 5.  

 

2. RELATED WORKS  

Cross-modality face recognition aims to identify faces through distinct modalities such as thermal, near-infrared, and 

computerized sketches to mention a few. Cross-domain matching is still a challenging problem because of: (1) the modality 

gap caused by texture, resolution, and illumination, (2) the lack of coupled cross-modality databases, and lack of efficient 

learning tools; (2) difficulties in collecting faces of the same person with various cross-modality and attributes, which 

means limited inter-domain face images are available for training compared to the visible images.  

While there has been tremendous success in facial detection and recognition systems in the visible light domain [1]–[9] 

much less work has been done to achieve such performance in other domains such as the thermal domain. State-of-the-art 

facial recognition models perform poorly when attempting to recognize faces captured in the thermal domain. This is due 

to the existing domain gap between images captured in the visible and thermal domain. A few methods have been proposed 

to address this domain gap problem. 

Commonly used cross-modal face recognition methods utilize hand-crafted feature descriptors, which require prior 

knowledge to engineer relevant features, and which cannot exploit data-adaptive characteristics in feature extraction, hence 

resulting in unsatisfactory performance. For example, J. Choi et al. proposed using partial least squares-discriminant 

analysis (PLS-DA) framework to formulate facial recognition as a multimodal problem [16]. However, the reported 

recognition accuracy remained well below 50%. Antonio J, et al. [17] proposed a framework for automatically detecting 

faces in the thermal domain using haar cascade in combination with face contours, template matching and chamfer 

matching feature extractors. Felix J. et al. [18] proposed a facial recognition framework based on cross-spectral joint 

dictionary learning in combination with image reconstruction technique to achieve good recognition accuracy on face 

images across the near-infrared and visible light modality. Although this work achieved good accuracy, it required training 

the model from scratch on images from both domains and focused on frontal faces whereas our proposed approach has a 

design goal to be  invariant to facial expressions, head rotation and partial occlusions with sun-glasses.  

H. Zhang et al. [19] proposed a generative adversarial network to synthesize polarimetric thermal images into visible light 

domain. However, the target visible domain is the gray which is much closer to the polymetric thermal images hence 

relaxing the optimization constraint of the loss function. The model is limited for reconstructing colored images from the 

thermal counterpart and the synthesized images can exhibit blurriness and lack of finer details.  Xin D. et al [20] also 

recently proposed a more stable GAN network for synthesizing visible face from polarimetric thermal counterpart via 

attribute preserved synthesis. The Generator network is a U-NET like architecture [21] with a multimodal compact bilinear 

pooling, and effectively fusing the attribute vector and input visible image features in the latent space to help guide the 

generator. Furthermore, the combination of perceptual and identify losses in the generator optimization function helps 

eliminate blurriness and generate sharper image resulting in better recognition accuracy than similar state-of-the-art GAN 

models [22]–[24]. However, these works do not extend to the visible RGB domain and focus only on frontal faces with no 

emotions, and no occlusions.  

The most closely related work that attempts to synthesize faces in the visible RGB domain from their counterpart in the 

thermal-infrared is the TV-GAN proposed by Teng et al [25] which uses the base pix2pix [26] model with incorporated 

identity loss in the generator. However, this model generates some non-realistic colored images along with  blurry and 

noisy patches, in the output image. Furthermore, faces generated by this model have limited sharpness and often 

misrepresent color information. 

This work proposes to develop a more robust and more dynamic GAN network to synthesize photorealistic RGB visible 

faces from thermal-infrared face images. The proposed model uses a modified U-NET like architecture in the generator 

network with a cascaded-in-cascaded dense blocks. In addition to the adversarial and cycle-consistent losses, we 
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incorporate the perceptual loss [27] to guide the synthesis of more realistic images and overcome the challenges such as 

blurriness, lack of attention and sharpness, present in other architectures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. PROPOSED METHOD 

The goal of the proposed method is to learn a mapping function 𝐺𝑇→𝑅 that maps facial images in the thermal domain to 

their counterparts in the visible light RGB domain using paired samples from each domain. This is to boost cross-modal 

recognition accuracy of pretrained state-of-the-art face recognition models on thermal images by effectively eliminating 

the domain gap between thermal and RGB facial images. The proposed framework is inspired by CycleGAN [28], 

Pix2PixHD [29], and Residual Dense Nets [30] architectures and optimization functions.  

 

3.1 Architecture 

The  TR-GAN framework employs a U-Net-like [21] architecture with cascade residual blocks in the generator network 

as shown in Figure 2. Unlike Pix2PixHD, TR-GAN uses only a global generator and eliminates the need for a local 

enhancer by incorporating cascaded residual blocks. The generator network consists of a convolutional front-end, two 

down sampling layers followed by a set of cascaded residual block, and finally two up-sampling layers and a transpose 

convolution layer. As a result,  replacing the “Resnet Blocks” in the CycleGAN architecture with the “Cascaded-in-

Cascaded Residual Blocks” shown in Figure 2, helps the generator to synthesize images with more consistent local and 

global structural information. This is particularly useful because the training dataset not only contains frontal face images 

as other datasets, but also captures four different emotions poses (neutral, surprised, sleepy, and smiling), side views (left 

and, right side view), and partial occlusion (with sun glasses) for each subject in the dataset, which renders training more 

complex. Furthermore, in addition to CycleGAN losses, the perceptual loss the generator objective function to help 

maintain realism and properly synthesize fine details is added. By virtue of cycle-consistency of the optimization function, 

the model simultaneously learns the inverse mapping function 𝐹𝑅→𝑇 during training, which can be used to generate paired 

thermal images for larger face datasets such as CelebA [8]. 

Figure 2: TR-GAN generator network architecture. Conv2D denotes 2D convolution layer, ReLU 
denotes Rectified Linear Unit activation function, Concat indicates concatenation, InstanceNorm 

is for instance normalization. Blocks are color coded accordingly. 

 

… 
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The TR-GAN model adapts the discriminator network architecture of CyleGAN [28] without any changes. This consists 

of two adversarial discriminators 𝐷𝑇   and  𝐷𝑅 ,where  𝐷𝑇   aims to discriminate between the original thermal images {𝑡}  

and the synthesized thermal image using the inverse mapping function {𝐹(𝑟)}; whereas 𝐷𝑅  aims to discriminate between 

the ground truth RGB images {𝑟} and reconstructed RGB images by the forward mapping function {𝐺(𝑡)}.   

 

3.2 Objective Function    

The objective function for the proposed GAN model aggregates the benefits of adversarial losses, cycle-consistent losses 

and perceptual loss respectively.  

Adversarial losses: The adversarial GAN loss function [13] enables modelling of the conditional statistical distribution of 

real RGB visible light images to help guide synthesis of realistic RGB images from given thermal input images. The 

adversarial loss consists of two parts, one for forward mapping function 𝐺𝑇→𝑅 and another for the inverse mapping function 

𝐹𝑅→𝑇 as follows: 

𝑳𝑮𝑨𝑵(𝑮, 𝑫𝑹 , 𝑻, 𝑹) =  𝐦𝐢𝐧
𝑮

𝐦𝐚𝐱
𝑫𝑹

( 𝑬𝒓~𝑷𝒅𝒂𝒕𝒂(𝒓)[𝒍𝒐𝒈(𝑫𝑹(𝒓))]   +   𝑬𝒕~𝑷𝒅𝒂𝒕𝒂(𝒕)[𝒍𝒐𝒈(𝟏 −  𝑫𝑹(𝑮(𝒕))] )              (1) 

𝑳𝑮𝑨𝑵(𝑭, 𝑫𝑻 , 𝑹, 𝑻) =  𝐦𝐢𝐧
𝑭

𝐦𝐚𝐱
𝑫𝑻

( 𝑬𝒕~𝑷𝒅𝒂𝒕𝒂(𝒕)[𝒍𝒐𝒈(𝑫𝑻(𝒕))]   +  𝑬𝒓~𝑷𝒅𝒂𝒕𝒂(𝒓)[𝒍𝒐𝒈(𝟏 −  𝑫𝑻(𝑭(𝒓))] )              (2) 

                         𝑳𝑨𝑫𝑽 =  𝑳𝑮𝑨𝑵(𝑮, 𝑫𝑹 , 𝑻, 𝑹) +  𝑳𝑮𝑨𝑵(𝑮, 𝑫𝒓 , 𝑹, 𝑻)                                                                     (3) 

 

Where 𝑻  represents the thermal domain and  𝑹 represents the visible light RGB domain;  𝒕 ∈ 𝑻 and 𝒓 ∈ 𝑹. 𝒕~𝑷𝒅𝒂𝒕𝒂(𝒕) 

and 𝒓~𝑷𝒅𝒂𝒕𝒂(𝒓) represents the data distribution in the thermal and visible RGB domains respectively.  

 

Cycle-Consistent losses:  The cycle-consistent losses help maintain training consistency by effectively preventing the 

learned forward mapping function 𝑮 from contradicting the learned inverse mapping function 𝑭 [28] . This is done to 

ensure that for any given thermal input image 𝒕𝒊 and corresponding RGB synthesized image 𝒓′𝒊 using the forward mapping 

function 𝑮, we can reconstruct the original thermal input image 𝒕′𝒊  using the inverse mapping function 𝑭, such that 𝒕𝒊  ≈

𝒕𝒊
′ , and vice versa.    

𝒕𝒊 → 𝑮(𝒕𝒊) → 𝑭(𝑮(𝒕𝒊)) ≈ 𝒕𝒊 and 𝒓𝒊 → 𝑭(𝒓𝒊) → 𝑮(𝑭(𝒓𝒊)) ≈ 𝒓𝒊                                                      (4) 

The cycle-consistent loss is expressed as follows: 

𝑳𝑪𝒀𝑪  = 𝑬𝒕~𝑷𝒅𝒂𝒕𝒂(𝒕)[||𝑭(𝑮(𝒕)) −   𝒕 ||𝟏]   +   𝑬𝒓~𝑷𝒅𝒂𝒕𝒂(𝒓)[||𝑮(𝑭(𝒓)) −   𝒓 ||𝟏]                                   (5) 

 

Perceptual loss: Pix2PixHD [29] experiments found that adding perceptual loss to the objective function can significantly 

improve performance. We introduce the VGG loss [27] into our objective function to help the generator evaluate the 

perceptual feature difference between the original RGB image and the synthesized image. Essentially, we reuse the 

pretrained features of the VGG19 network for optimum performance.  

𝑳𝑽𝑮𝑮 =  ∑
𝟏

𝑴𝒊
 [||𝑭(𝒊)(𝒓) −   𝑭(𝒊)(𝑮(𝒕)) ||𝟏]𝑵

𝒊=𝟏                                                                                          (6) 

Where 𝐹(𝑖) 𝑎𝑛𝑑 𝑀𝑖 respectively denote the 𝑖𝑡ℎ layer of VGG19 network, and the 𝑖𝑡ℎ  element of that layer. 

The complete objective function for the proposed TR-GAN architecture is defined as follows: 

𝑳𝑻𝑹−𝑮𝑨𝑵 = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝑮,𝑭

𝐦𝐚𝐱
𝑫𝑻 ,𝑫𝑹

(𝑳𝑨𝑫𝑽 + 𝝀𝟏𝑳𝑪𝒀𝑪 +   𝝀𝟐𝑳𝑽𝑮𝑮 )                                                                             (7) 
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Where 𝝀𝟏 = 𝟏𝟎. 𝟎 𝑎𝑛𝑑  𝝀𝟐 = 𝟐. 𝟎 respectively represent the weight for Cycle-consistent loss and VGG loss and control 

their relative importance in the overall optimization function. 

 

 

4. EXPERIMENTS AND RESULTS  

4.1 Dataset and Training 

The proposed TR-GAN is trained on the Tufts Face Dataset [11] which contains ground truth images across seven different 

modalities including visible light, near-infrared, thermal, computerized sketch, video, LYTRO and 3D images. 

Corresponding image pairs in the Tufts Face Dataset are currently not properly aligned and capture part of the upper body 

as seen in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the dataset as is would therefore cause the generator to generate images with misplaced eyes, nose or ears, and result 

in distorted reconstruction. To address this challenge, we derive a more face-focused and aligned dataset better suited for 

training GAN models for intermodal face synthesis. First, we extract matching pairs of thermal and RGB ground truth 

images and manually crop out the faces in each image, approximating the top of the hair, side of the ears and the bottom 

of the chin. The cropped faces are then resized to 128x128 pixels to normalize the dataset. The dataset contains 112 

participants including 74 females and 38 males, from 15 countries. Furthermore, the dataset captures emotions such as 

neutral, smile, sleepy, surprised; occlusion with sunglasses; and side views at various angles. The proposed aligned dataset 

will be added as contribution to the Tufts Face Dataset currently available on Kaggle. Figure 3 shows sample images of 

subject #23 from the proposed normalized training set.  

We randomly select 17 subjects for testing and use the rest for training. The training set contains a total of 1294 thermal 

images and corresponding 1294 RGB images, while the test set contains 238 thermal images and corresponding ground 

truth RGB. Training is conducted with a batch size of 4 and uses the Adam optimizer with an initial learning rate of 0.0002.  

 

 

Figure 3: Sample data of the normalized thermal-RGB dataset from Tufts Face Dataset. #23 

indicate the subject ID number, 𝐴𝑖  denotes “Around” at ith angle, and 𝐸𝑖  denotes ith emotion  
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4.2 Results  

Performance of the proposed model is compared against other state-of-the-art GAN algorithms such as TV-GAN [25], 

Pix2PixHD[29] and CycleGAN[28]. Synthesized images by each model as shown in Figure 4 demonstrate that our model 

generates more realistic looking images and does a much better reconstruction job while preserving important and fine 

details.  
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Figure 4: Sample results of generated images by each model from the input thermal images. These images are from the 

test set and were not seen during training. Images in the first column are ground truth RGB images that models are trying 
to replicate, while images in second column are input thermal images to the model. Models’ outputs are presented in each 

column. 

The TR-GAN model generates much sharper images with better matching features to the ground truth RGB image than 

other state-of-the-art models. Furthermore, TR-GAN can better synthesize intricate details such as facial emotions 

(surprised, smile, sleepy, neutral), sunglasses and corrective eyeglasses occlusions, and facial hair. Images generated by 

our model are therefore more visually appealing than other models’ outputs, and much more similar to the ground truth 

RGB images as evidenced in sample results shown in Figure 4. 

For the face recognition experiment, we use the VGG-Face recognition system [7], [31], [32], particularly the Keras 

implementation [32]. Ground truth RGB images from the test set consisting of 238 images from 17 subjects, are used to 

learn “known embeddings” against which generated images will be matched. Essentially, we reuse the VGG-Face model 

without modification nor retraining. Feature embeddings of synthesized RGB images by each model are extracted and 

compared against “known embeddings” to find potential matches. Recognition accuracies are as reported in the table below 

and is calculated as the ratio of the number of positive matches to the total number of test images. 
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Table 1: Comparison of VGG-Face recognition accuracy on synthesized test images by various GAN models 

 Original 

RGB 

Thermal TV-GAN Pix2PixHD CycleGAN TR-GAN 

(Ours) 

Resnet50  

accuracy (%) 

100.0 47.0 42.85 44.95 75.21 80.7 

VGG16 

accuracy (%) 

100.0 30.67 53.78 61.74 79.41 88.65 

 

As evidenced in Table 1, the pretrained VGG-Face recognition model yields a 47% accuracy on thermal images but up 

to 88.65% recognition accuracy on the TR-GAN synthesized images. This demonstrates that bridging the domain gap by 

translating thermal images to their visible RGB counterpart using the proposed TR-GAN can almost double the face 

recognition accuracy. It is worth noting that the VGG-Face recognition accuracy on the ground truth RGB image is 100% 

for both “resnet50” and “vgg16” network models, which shows that VGG-Face is the adequate tool for properly evaluating 

impact of TR-GAN on cross-modal face recognition task.  

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a sophisticated TR-GAN model capable of translating images from the thermal domain to the 

visible light RGB domain.  The developed model  (1) reduces the domain gap between the thermal and visible RGB 

domains,  (2)  synthesizes more realistic looking and more visually appealing images with finer details and better sharpness 

than existing state-of-the-art image-to-image translation GAN models, and (3) helps boost cross-modal recognition 

accuracy by using VGG-Face shelf recognition systems without the need to retrain the network. Experimental results show 

that the proposed TR-GAN model performs well reconstructing intricate details such as sunglasses, eyeglasses, facial 

emotions, and facial hair.  

Furthermore, we introduced a normalized couple cross-modal (thermal-RGB) dataset as part of the Tufts Face Dataset to 

provide more suitable cross-modal data for training similar GAN models. The improved dataset eliminates the 

misalignment problem between paired data in the Tufts Face Dataset by manually cropping randomly sized paired images 

and adequately aligning and uniformly resizing them to 128x128 pixels. Moreover, by virtue its cycle consistency, the 

inverse mapping function of the proposed TR-GAN model can be used to create more accurate paired thermal samples 

from larger face datasets such as CelebA. Finally, VGG-Face recognition is performed on synthesized images to evaluate 

the benefits of the proposed model on cross-modal recognition task. Experimental results report 47% cross-modal 

recognition accuracy on original thermal images given corresponding known ground truth RGB images, and up to 88.65% 

on counterpart TR-GAN synthesized images. Therefore, translating thermal input images to their RGB counterparts using 

the proposed TR-GAN almost doubles the cross-modal recognition accuracy, which is also higher than the accuracy 

reported for other GAN models on the same test set.  

For future work, we plan to integrate additional losses and incorporate attention mechanism to the generator and 

discriminator network to improve sharpness and color replication in synthesized output images, and further eliminate the 

crystallization effect. We also plan on analyzing facial expression recognition of visible, thermal, and fused imagery in an 

indoor and outdoor environment for human-computer interaction related applications.  
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