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Abstract

Multilingual speaker recognition involves multilingual speech data in model
training, which empowers the system to handle recognition requests in multiple
languages. The multilingual training approach augments data from multiple
languages, but inevitably introduces probability dispersion, due to the more
complex language conditions. This paper proposes a language-aware training
approach for PLDA which involves language information when training the PLDA
model.
The proposed approach has been evaluated with the i-vector/PLDA framework

using the CSLT-CUDGT2014 Chinese-Uyghur bilingual speech database. The
experimental results show that the language PLDA training resulted in a relative
EER reduction of 15.38% in the Chinese test and 20.07% in the Uyghur test.
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1 Introduction
Speaker recognition accepts or rejects a claimed identity of a speaker based on

speech input. After decades of research, performance of speaker recognition systems

is fairly good if the training data are sufficient and the test condition matches the

condition of the training data [1, 2]. However, if there is mismatch between the

conditions of training and test speech, performance of speaker recognition systems

is usually degraded significantly [3]. The mismatch may be on recording device,

background noise, speaking style, and others.

Among these mismatches, language variability is a special type. On one hand,

it is widely assumed that speaker recognition is language independent, because

speaker traits are mostly determined by acoustic features. It is not our experience

that a speaker cannot be recognized when she/he speaks a different language. On

the other hand, many studies have confirmed that language mismatch indeed leads

to serious performance degradation for speaker recognition systems [4, 5]. There

are two types of language mismatches in speaker recognition. The first type is

the mismatch between enrollment and test, i.e., enroll in one language while test

in another. The second type is the mismatch between model training and system

operating, i.e., system is trained in one language but operated (enrollment plus test)

in another language. The first mismatch is often encountered when the users are

mixlingual, i.e., they use multiple languages in their daily life. The second mismatch

is often encountered when the system is migrated from one language to another.
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A multitude of research has been conducted to deal with language mismatch,

either the one between enrollment and test or the one between training and oper-

ating. For example, Ma [4] studied the enrollment-test mismatch and found that it

causes significant performance degradation for speaker recognition. Auckenthaler [5]

investigated the mismatch between training and operating, within the popular u-

niversal background model-Gaussian mixture model (UBM-GMM) architecture [6].

They found considerable performance degradations if the speech data used to train-

ing the UBM and the speech data used to enroll/test speakers are in differen-

t languages. Abhinav [7] studied the same problem within the state-of-the-art i-

vector architecture [8], and investigated both the enrollment-test mismatch and the

training-operating mismatch. Their results confirmed that language mismatch, in

spite where it occurs, leads to significant performance degradation. These results

mentioned above seem opposite to our intuition that speaker traits are independent

of language. We attribute the discrepancy between the empirical results and the

intuition to the ‘engineering’ part of the recognition system: it is the models (e.g.,

UBMs, i-vectors, speaker GMMs) rather than the speaker characteristics that are

language dependent. These models are trained in one language and are not well

suited to other languages.

A simple yet effective approach to deal with language mismatch is multilingual

training. This approach employs multilingual data to train the system so that all

the languages in both enrollment and test are covered. All the studies mentioned

above confirmed that multilingual training can largely recover the performance

degradation caused by language mismatch. Particularly, the experiments presented

in [7] demonstrated that even with a small amount of data from the target language,

the system can obtain significant performance gains in the multilingual environment.

From the perspective of model training, the effect of the multilingual training is

two-fold: on one hand, it involves more training data and therefore tends to gener-

ate stronger models; on the other hand, the model covers multiple languages and

therefore the probability distribution is less concentrated compared to monolingual

models. An ideal multilingual training should keep the advantage in enriched data

but alleviates the effect of language mixing. This paper proposes a language-aware

multilingual training approach. The basic idea is to involve language information in

multilingual training, so that multilingual data can be used in a more effective way.

Our study is based on the i-vector architecture and trains a language-aware proba-

bilistic linear discriminative analysis (PLDA) model, which simply treats i-vectors

of the same speaker but in different languages as different classes during PLDA

training. By the language-aware PLDA, speakers are represented by different latent

factors when they speak in different languages, leading to a more discriminative

representation. This approach is largely motivated by the phone-aware methods in

speaker recognition. For example, Larcher et al. [9] proposed to use phone infor-

mation when constructing the WCCN [10] matrix. In [11], the authors presented

a text-aware PLDA, which treats a single speaker as different classes when he/she

speaks different phrases, leading to discriminant on both speakers and phrases.

This is similar to the language-aware PLDA presented here, though we focus on

discriminating both speakers and languages.
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The rest of this paper is organized as follows: Section 2 briefly introduces the i-

vector/PLDA framework, and Section 3 proposed the language-aware PLDA train-

ing. Section 4 presents the experimental results, and Section 5 concludes the paper.

2 I-vector/PLDA framework
2.1 I-vector

By the i-vector model, a speaker supervector M is assumed to be a linear Gaussian

of the form:

M = m+ Tw (1)

where m is the mean supervector of the UBM, T is the total variability matrix, and

w is a low-dimensional vector that represents the whole speech utterance. The prior

of w is assumed to be a normal distribution. Given a set of training speech signals

{Xi}, the model training is cast to maximizing the following objective function with

respect to the loading matrix T :

L(T ) =
∑
i

ln{P (Xi;T )} =
∑
i

ln{
∑
M

P (Xi;M)P (M ;T )}

where the conditional probability P (Xi;M) is modelled by a GMM, and the prior

probability P (M ;T ) is a Gaussian. Once T is estimated, inferring the posterior

probability of w given an utterance X is simple since P (w|X) is a Gaussian as well.

In most cases only the mean vector of the posterior is concerned. This is a maximum

a posterior (MAP) estimation, and leads to the i-vector of the utterance X. More

details can be found in [12].

During test, the i-vectors of the enrollment and test utterances inferred by MAP,

and the score that the two utterances are from the same speaker can be computed

as the cosine distance between the two i-vectors.

2.2 PLDA

I-vectors represent both speaker and non-speaker variabilities such as channels and

noise. In order to promote the discriminative capability among speakers, various

normalization approaches have been proposed, among which PLDA shows clear ad-

vantage [13]. Let w(r,n) denotes the i-vector of the r-th utterance from n-th speaker,

the PLDA model forms a linear Gaussian generative process as follows:

w(r,n) = m+ Vyn + Ux(r,n) + ε(r,n) (2)

where m is a global vector, and yn and x(r,n) represents the speaker factor and the

session factor, respectively, and ε(r,n) represents the residual. The loading matri-

ces V and U define the speaker subspace and the channel subspace, respectively.

The factors yn and x(r,n) are assumed to follow a prior of normal distribution,

and ε(r,n) follows a Gaussian distribution whose mean is 0 and covariance Σ. The
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expectation-maximization (EM) algorithm can be used to estimate the model pa-

rameters {m,U,V,Σ}, while the MAP estimation can be used to infer the speaker

vector yn.

2.3 PLDA scoring

Although PLDA scoring can be conducted by inferring the speaker factor yn and

then computing the cosine score, a more systematic way is by hypothesis test. Given

two i-vectors w1 and w2, the confidence that they belong the same speaker can be

computed as the likelihood ratio as follows:

LR = log
P (w1, w2|Htrue)

P (w1, w2|Himp)
(3)

where Htrue is the hypothesis that w1 and w2 are from the same speaker, and Himp

represents the hypothesis that the two i-vectors are from different speakers. This

approach marginalizes over yn, and therefore is more accurate.

3 Language-aware PLDA training
In multilingual PLDA training, each speaker is regarded as a single class, in spite

the language of the training utterances. A consequence of this multilingual training

is that the PLDA model can implicity deal with multilingual enrollment and test

utterances: the underlying speaker factor can be inferred by considering the possi-

bility that the input utterances are in each of the languages that have been covered

by the model. Although this inference does not really happen in the PLDA scoring

(Eq. 3), the speaker factor perspective helps understand the strength of the multi-

lingual training. This is shown in Fig. 1, where the circles represent the contour of

the distribution of the MAP speaker factor yn. We use solids circles to denote the

contours of yn inferred from utterances in language L1, and dot circles to denote

the contours of yn inferred from utterances in language L2. In plot (a), the PLDA

model is trained with data in L1, while in plot (b), it is trained with data in both

L1 and L2. It can be found that when inferring speaker factors for utterances in L2

(the dot circles), the L1-trained PLDA leads to a large inter-speaker overlap, due

to the uncertainty of the model on the new language. For the multilingual-trained

PLDA, the discriminant on both L1 and L2 is clear, even though the enrollment

and test utterances are from different languages.

L2L1 L2L1 L2L1

(a).  Monlingual (b).  Multilingual (c).  Language-aware

Figure 1 Distribution of latent speaker factors with PLDA different training methods.
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In spite the improved capability in handling multiple language, the discriminative

power on a particular language is inevitably decreased by the multilingual training.

This is because the distribution of the MAP speaker factor has to be ‘broader’ (pre-

cisely, larger trace of the covariance) to cover multiple languages, leading to ‘prob-

ability dispersion’. We propose a language-aware training approach to solve this

problem. Specifically, the class definition used in the PLDA training involves both

the speaker and language identities. In other words, utterances of the same speaker

are regarded as in different classes if they are spoken in different languages. By this

simple change, the PLDA model learns to discriminate both speaker and language

in its latent space, resulting in highly distinct posteriors for the same speaker in

different languages. This is shown in plot (c) of Fig 1. It should be emphasized that

this language-aware training is different from language-dependent training, where

separated PLDA models are trained for each language. The language-aware training

is still a multilingual training, so the statistical strength with multilingual data is

retained, leading to a stronger model compared to language-dependent models that

are trained on data of individual languages. Finally, we note that the language-aware

training cannot solve the enrollment-test mismatch. From Fig 1 plot (c), it is clear

that i-vectors of utterances from the same speaker but in different languages are

clearly separated in the latent speaker factor space, leading to a large intra-speaker

variation hence weak inter-speaker discrimination.

4 Experiments
4.1 Data and settings

The speech database used in this study is CSLT-CUDG2014 [14], a Chinese-Uyghur

bi-lingual speech corpus created by CSLT@Tsinghua University. This database in-

volves two languages: Mandrin Chinese and Uyghur, which are used as two official

languages in Xinjiang Uyghur autonomous regions of China. This database is de-

signed to study the effect of language mismatch so the discrepancy caused by other

factors is intentionally excluded, including linguistic content, channel, noise, emo-

tion, etc. The speech signals were recorded in the sampling rate of 16 kHz and the

sample size if 16 bits, using a single smart phone. The contents of the recordings

are Chinese and Uyghur digital strings.

There are 181 speakers in the database. For each speaker, two enrollment speech

segments, one in Chinese and one in Uyghur, were recorded. For test, each speaker

recorded about 10 speech segments in each language for each speaker. Each enroll-

ment segment lasts 40-60 seconds and each test segment lasts 2-3 seconds. The 181

speakers are split into two sets. The first is the training set, which involves 2816

utterances in Chinese or Uyghur from 130 speakers. This set is used to train the

UBM model, the T matrix and the PLDA. The rest 51 speakers comprise the evalu-

ation (test) set, used to test the system performance. In our previous work [14], only

the female part of the CSLT-CUDG2014 database was used to study the language

mismatch challenge. This work used both the female and male data.

The experimental system was based on the i-vector/PLDA framework. The feature

was 20-dimensional Mel Frequency Cepstral Coefficients (MFCCs) plus their ∆

and ∆∆ derivatives. The utterance-level cepstral mean and variance normalization

(CMVN) was employed to remove the channel effect, and an energy based voice
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activity detection (VAD) was applied to remove unvoiced segments from the speech.

The number of Gaussian components in the UBM was set to 128 and the i-vector

dimension was set to 400. The Kaldi toolkit [15] was used to perform the model

training and test.

4.2 Baseline System

The baseline system is a multilingual system with the conventional PLDA. Specif-

ically, the UBM and the loading matrix of the i-vector model are trained with all

the Chinese and Uyghur data. For PLDA, we tested three scenarios: Chinese PLDA

and Uyghur PLDA, trained with the Chinese and Uyghur data respectively, and

multilingual PLDA, trained using both the Chinese and Uyghur data.

Table 1 Baseline EER results

PLDA Enrollment Test. EER (%)

Chinese Chinese Chinese 2.40

Chinese Chinese Uyghur 6.60

Chinese Uyghur Uyghur 2.99

Chinese Uyghur Chinese 8.98

Uyghur Chinese Chinese 3.59

Uyghur Chinese Uyghur 5.59

Uyghur Uyghur Uyghur 3.39

Uyghur Uyghur Chinese 9.98

Multilingual Chinese Chinese 2.60

Multilingual Chinese Uyghur 4.59

Multilingual Uyghur Uyghur 2.99

Multilingual Uyghur Chinese 6.59

The results in terms of equal error rate (EER) are presented in Table 1. There are

two mono-lingual conditions and two cross-lingual conditions. For each condition,

the number of trials is 25, 551, including 501 true speaker trials and 25, 050 imposter

trials. The best results in each condition are highlighted. It can be seen that the

multilingual trained PLDA exhibits clear advantage compared to the monolingual

trained ones, particularly in the cross-lingual test conditions. In the Chinese-Chinese

condition, the Chinese PLDA shows a little superior (2.40 v.s. 2.60), while in the

Uyghur-Uyghur condition, the multilingual PLDA is better (3.39 v.s. 2.99). This

inconsistent results confirms our conjecture that the effect of the multilingual train-

ing is two-fold: on one hand, it can utilize more data, and on the other hand, the

uncertainty on speakers is increased due to the introduction of other languages.

4.3 Language-aware training

The results with the language-aware PLDA training are shown in Table 2, where

‘LA’ denotes ‘language-aware training’. For comparison, the EER results with the

conventional multilingual training are also presented. It can be seen that in the

two monolingual test conditions, the language-aware training achieves better per-

formance than the conventional multilingual training. For the Chinese-Chinese test

and the Uyghur-Uyghur test, the relative EER reduction is 15.38 % and 20.07 %,
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respectively. Interestingly, the results with the language-aware PLDA are even bet-

ter than those obtained with the monolingual PLDAs. This strongly supports our

conjecture that the language-aware training can leverage the advantage of multilin-

gual data and avoid the problem of probability dispersion. Finally, we found that

the cross-lingual results with the language-aware PLDA are worse than the conven-

tional multilingual PLDA. This again conforms our conjecture that language-aware

training leads to large inter-speaker variation hence worse cross-lingual performance.

Table 2 EER results with language-ware PLDA

EER (%)
Enrollment Test. No LA LA

Chinese Chinese 2.60 2.20
Chinese Uyghur 4.59 4.99
Uyghur Uyghur 2.99 2.39
Uyghur Chinese 6.59 7.78

5 Conclusion
This paper presented a language-aware PLDA training approach for multilingual

speaker recognition. With the language information involved, the PLDA model can

largely avoid the probability dispersion problem while still take the advantage of

multilingual training in statistical strength. Our experiment in a Chinese-Uyghur

multilingual speaker recognition task showed that the proposed method obtained

a relative EER reduction of 15.38% in the Chinese test and 20.07% in the Uyghur

test, which validated the idea of language-aware training. Future work will test the

method on larger data sets to confirm its strength.
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