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Abstract

Voice activity detection (VAD) plays an important role in speaker recognition.
This paper proposes to use a novel DNN-based VAD which harnesses the power
of deep neural networks (DNN) in learning speech patterns from a large labelled
database designed for speech recognition, and thus deliberately optimizes the
discrimination between speech and non-speech signals. More interestingly, the
output of the DNN offers a noise prior, which may lend itself to a Bayesian
treatment for the uncertainty of noise in speaker recognition.

The experiments were conducted on the mismatched-microphone condition
(C3) of the SRE08 core test. It was found that the DNN-based VAD offered a
relative reduction of 22.0% in equal error rate (EER) when compared to a
fine-tuned energy-based VAD. When the Bayesian approach was employed,
additional gains were obtained, particularly in noise conditions.
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1 Introduction
Speaker recognition, also known as voiceprint recognition, has been broadly used to

verify speaker identities. An important component of a practical speaker recognition

system is the voice activity detection (VAD), which plays the role to select the

speech segments which are the most effective for speaker discrimination.

VAD has been extensively studied in signal and speech processing communities.

Early VAD algorithms are most based on features that reflect voice properties,

e.g., the linear prediction coding (LPC) parameters [1], energy and formant [2],

zero crossing rate (ZCR) [3], cepstrum [4], periodicity [5], pitch [6]. Another class

of VAD algorithms is based on probabilistic models. Probably the most popular

approach is the one based on likelihood ratio test (LRT), first proposed in [7].

Various extensions have been presented, by using more powerful LR estimations [8],

better temporal smoothing [9], more discriminatively trained model [10] and more

appropriate assumptions on the speech signal distribution [11]. The third category

employs simple acoustic features (e.g., MFCCs) but relies on more powerful models

and classifiers. The widely used models include Gaussian mixture model (GMM) [12,

13], hidden Markov model (HMM) [14], multi-layer perceptron (MLP) [15] and

support vector machine (SVM) [16]. The MLP-based and GMM-based approaches

were compared in [17], and the GMM and the maximum entropy (ME) model were

studied in [13]. [18] compared the three popular models (GMM, SVM and MLP)

and found the MLP produced better performance.

Recently, deep neural networks (DNN) gained popularity and many DNN-based

approaches were reported. For example, [19] proposed to use DNN (called DBN
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in their paper) to integrate heterogeneous primary and high-level features to gain

a strong VAD. The novel approach based on recurrent neural networks (RNN)

was proposed in [20], which follows the early work in [21], but involves a deep

structure and uses a different activation function in a quadratic form. The RNN-

based approach was also proposed in [22] but in a special form, i.e., the long short

term memory (LSTM) RNN.

In spite of the rich research, the VAD approaches used in speaker recognition

are rather simple. Probably the most popular one is still the simple energy-based

approach, possibly with an adaptive threshold [23, 24]. Some researchers used the

periodicity of speech frames or the power of noise-removed speech frames as the

criterion to make speech/non-speech decisions [25, 26, 27, 28]. Another popular

VAD approach is based on GMMs [29, 30]. The MLP was also used in [15], and was

found to be effective in low-SNR conditions. A possible reason that most speaker

recognition systems use simple VAD is that the dominant GMM-based speaker

recognition framework is able to classify noise frames to the appropriate Gaussian

components that represent noise, which reduces the impact of noise frames even if

they are not well removed. Additionally, GMM-based speaker models do not rely on

the temporal structure of speech signals, and so the complex smoothing methods

and temporal constrains for VAD are not required.

Nevertheless, if the SNR is high, most of the simple VAD approaches tend to

cause unacceptable errors, which in turn leads to serious performance reduction for

speaker recognition. This is because true speech signals, even corrupted by noise,

are still valuable for identifying speakers, and true noise signals simply degrade

performance if they are not removed. In this situation, it is highly important to

employ a strong VAD that is insensitive to noise so that real speech can be selected.

This has been demonstrated by the experiments in [15], where the powerful MLP-

based VAD offers more contribution in conditions with a low SNR.

This paper proposes a DNN-based VAD for speaker recognition. The DNN model

has attained remarkable success recently in multiple research fields, particularly

in speech recognition [31]. A valuable property of DNN is that it can learn high-

level representations from raw features, and the learning can be performed within a

complex feature space, for example, complicated noise conditions. These advantages

can be harnessed to construct a strong VAD can deal with complex noise conditions,

by learning from just raw features (e.g., the Fbank feature in this study).

An important by-product of the DNN-based VAD is the posterior probabilities

read from the DNN output. Traditionally, these posteriors are used to make the

speech/non-speech decision by comparing them with a pre-defined threshold. It

works fine with clean speech, however in noisy conditions, this ‘hard decision’ is too

abrupt as the decision boundary tends to be unreliable with noisy signals, and so

any decision involves a large uncertainty. A better solution is treating the posteriors

as prior confidence when the frames are pooled to perform recognition. This leads

to a Bayesian treatment that we will present in Section 4.

The rest of the paper is organized as follows: Section 2 discusses related work,

Section 3 presents the DNN-based VAD, which is followed by the Bayesian approach

described in Section 4. Section 5 presents the experiments and Section 6 concludes

the paper.
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2 Related work
The VAD method based on DNNs has been proposed in several papers, e.g. [19,

20, 22], though our focus is speaker recognition instead of VAD itself. Probably the

most relevant work is [15] where the power of MLP was demonstrated, especially

in noise conditions. The difference of our work is that we use a DNN instead of an

MLP so that can leverage the power of deep structures to learn features that are

important to discriminate speech and non-speech signals. Additionally, this work

focuses more on the Bayesian treatment.

Besides frame selection, VAD has also been used to enhance speech signals for

speaker recognition, combined with techniques such as Wiener filtering [29] and

spectral subtraction [30]. Reasonable performance improvements have been reported

by the enhancement methods. This paper does not try to remove noise, but address

the uncertainty it caused. Nonetheless, noise removal and uncertainty compensation

are complementary and can be combined to deliver a better treatment for noisy

speech. We leave this combination as future work.

3 DNN-based VAD
DNN is a general non-linear classifier and can be trained to distinguish speech and

non-speech signals, simply by collecting speech and non-speech frames and setting

the training objective as the binary classification task. A potential difficulty is that

training the VAD-DNN model requires speech/non-speech labels for each frame,

which is not a trivial task although with forced alignment employed. An alternative

approach is used in this paper: instead of training the VAD-DNN from scratch, we

borrow it from a full-fledge automatic speech recognition (ASR) system.

DNN models have been widely used in ASR. These models are trained on large

speech corpora that are labelled by words or phones, and so are quite powerful in

phone discrimination. This power can be used to construct a strong VAD. The only

change from an ASR-DNN to an VAD-DNN is that the output of the units corre-

sponding to all speech (noise) phones need to be merged to produce the posterior

that the input frame is speech (noise).

Figure 1 shows the structure of a VAD-DNN that is constructed based on an

ASR-DNN. The ASR-DNN part involves 4 hidden layers and a phone-posterior

layer (the output layer in the original ASR-DNN). The output layer merges the

posteriors of speech and non-speech phones respectively to produce speech/non-

speech posteriors.

The ASR-DNN was trained with about 100 hours of speech data and 12 minutes

of noise data. The input layer consists of 200 units, corresponding to the dimension

of the input features Each hidden layer consists of 1, 200 units, and the output layer

(the phone posterior layer in Figure 1) consists of 3, 440 units, corresponding to the

3, 440 tri-phone states of the ASR system. Among these units, 16 units correspond to

silence and noise, and the rest correspond to true speech. The output of these units

are merged according to their corresponding phones, which has been represented

by the connections from the PP layer to the output layer in Figure 1. At present

all the weights of these connections are set to 1 without re-training. Note that the

idea of reusing neural networks trained for ASR to perform VAD has been proposed

in [15].
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Figure 1 The DNN structure borrowed from ASR and used for VAD.

4 Bayesian treatment

This work is based on the gaussian mixture model-universal background model

(GMM-UBM) framework. In this framework, the UBM is trained with speech fea-

tures (MFCCs in this work) of a large number of speakers, and for each registered

speaker, a speaker GMM is adapted from the UBM via the maximum a posterior

(MAP) algorithm. In test, an utterance in the form of features X is tested against

the model of the claimed speaker s. The confidence score that utterance X is spoken

by s is computed as the log likelihood ratio (LLR), written by logΛ(s;X). Normally,

the LLR is computed as the average of the frame-based LLRs {Λ(s;xt)} where t

indexes the speech frames. This is formulated as follows:

logΛ(s;X) =

|X|∑
t=1

logΛ(s;xt) (1)

=

|X|∑
t=1

log
p(xt|Ms)

p(xt|Mu)
(2)

where |X| denotes the number of frames in X, and Ms and Mu are the speaker

GMM and the UBM respectively. p(xt|M) is the probability function of model M,

which is essentially a mixture of Gaussians. With the LLR score, the decision that X

is spoken by s is achieved simply by comparing the LLR to a pre-defined threshold

θ.

A potential problem of the LLR test in Eq. (1) is that all frames are treated equally

in the average. This may lead to unreliable LLR estimation when some frames are

not reliable. For example if some frames are seriously corrupted by noise, involving

them in Eq. (1) just decreases performance.

This problem is generally addressed by VAD. VAD can be regarded as a frame-

selection process that determines which frames are retained in the LLR test. This

can be simply represented by a binary indicator variable c(t) which is 1 when frame

t is identified as speech by VAD, otherwise 0. This leads to the modified LLR score

as follows:
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logΛ(s;X) =

|X|∑
t=1

c(t)logΛ(s;xt). (3)

The VAD-based approach generally works well in conditions with a high SNR.

However, for low-SNR conditions, simple VAD methods (e.g., the one based on

simple energy threshold) tend to fail. A stronger VAD, for example the one proposed

in this paper, can help to some extent, however the performance degradation is still

significant compared to the case with an ideal VAD. This can be largely attributed

to the intrinsic uncertainty in the speech/non-speech decision when the signal is

noisy: it is really difficult to tell if a noisy segment is speech or not, even for people.

This uncertainty means that the ‘hard decision’ based on VAD is over abrupt, and

it is not appropriate to deal with noisy conditions.

A possible solution is a ‘soft decision’ that places a confidence that measures the

probability that a frame is speech, rather than classifying it to speech or non-speech

deterministically. This confidence can be regarded as a prior knowledge that a frame

is speech, since it is derived from an exotic model. The modified LLR formula is

given by:

logΛ(s;X) =

|X|∑
t=1

P (v|xt)logΛ(s;xt) (4)

where v denotes the event that a frame is speech, and P (v|xt) is the probability that

v occurs. This formulation leads to a probabilistic approach to deal with the decision

uncertainty associated with VAD on noisy speech signals, and can be regarded as

a Bayesian treatment in a general sense.

The confidence, or the prior probability P (v|xt) can be derived from any model

that can produce posterior probabilities of v given xt, for example, using GMMs

with the Bayesian rule. This work chooses the DNN model described in the previous

section, due to a multitude of advantages it possesses. First, it is a discriminative

model and naturally produces posteriors. Second, the DNN is trained with a large

amount of labelled data so can leverage rich information for phone discriminant.

Third, the deep structure is powerful to learn multiple noise types which makes it

very powerful in addressing complex noise conditions.

5 Experiment
This section presents the experiments. We start by describing the data and config-

urations, and then report the results on clean speech and noisy speech sequentially.

5.1 Data and configurations

The experiments are conducted on the C3 condition of the NIST SRE08 core test,

which involves mismatched-microphone channels. The speech data are interviews

recorded by different microphones, at an 8k Hz sampling rate with 16-bit precision.

The data set involves 853 female speakers and 18, 780 test utterances in total.
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Each of the enrollment and test utterances lasts about 3 minutes. All the trials

are divided into 2 groups, one is the development set and the other is the test set.

The development set involves 200 speakers and 4, 376 trials, and the evaluation set

involves 653 speakers and 14, 404 trials.

The recognition system is constructed based on the GMM-UBM architecture. The

acoustic feature consists of 16-dimensional MFCCs and their first order derivatives.

The UBM is trained with the Fisher English database. The training data consists of

4, 000 utterances that are randomly selected from the Fisher database. The UBM

comprises 2, 028 Gaussian components, and the speaker GMMs are derived from

the UBM by MAP adaptation.

5.2 Clean speech test

The first experiment evaluates the DNN-VAD and the Bayesian approach on clean

speech. The baseline is based on the simple energy-based VAD that has been care-

fully tuned with the development set.

To have an intuitive idea, the posterior probabilities P (v|xt) produced by the DNN

(prior probabilities for speaker recognition) for all the frames xt of the development

set are collected, and the distribution of the values is drawn in Figure 2.
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Figure 2 Distribution of the values P (v|xt) on the development set.

From the distribution, it is clear to see that P (v|xt) is rather discriminative: it

assigns speech frames a value close to 1 and non-speech frames a value close to 0.

This indicates that there is little uncertainty for VAD with the clean speech data.

Table 1 reports the results on the development set, in terms of equal error rate

(EER). Three systems are reported: the baseline system that employs an energy-

based VAD, the DNN-VAD system which employs the DNN-based VAD, and the

Bayesian system that employs the Bayesian treatment given by Eq. (4). Performance

with various thresholds θ are presented for the DNN-VAD system. For the baseline

system, only the best result with the optimal threshold is reported since it is not

the focus of the paper.

From Table 1, we see clear advantage of the DNN-based VAD when compared to

the energy-based VAD employed in the baseline system. The Bayesian system also

outperforms the baseline, but slightly worse than the best DNN-VAD system. This
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System Threshold(θ) EER%
Baseline - 32.56

DNN-VAD 0.6 24.35
DNN-VAD 0.7 23.88
DNN-VAD 0.8 23.60
DNN-VAD 0.9 23.67
DNN-VAD 0.95 24.56
Bayesian - 24.13

Table 1 The EER results on the development set, tested with clean speech. The best result is in bold
face.

System Threshold(θ) EER%
Baseline - 31.49

DNN-VAD 0.8 24.57
Bayesian - 25.00

Table 2 The EER results on the evaluation set, tested with clean speech. The best result is in bold
face.

can be explained by the fact that the uncertainty in the VAD decision on clean

speech is insignificant (see Figure 2), which means that the Bayesian approach is

not very necessary. Anyway, the Bayesian approach enjoys a big advantage that

there is not a threshold θ, which makes the method more robust against the change

of acoustic conditions. This will be further verified by the noisy data test presented

shortly.

The performance on the evaluation set is shown in Table 2, where the best thresh-

old obtained from the development set is applied directly, for both the baseline and

the VAD-DNN system. The observations are similar the results in Table 1: both the

DNN-VAD and the Bayesian system outperform the baseline in a significant way,

and the Bayesian treatment is slightly worse than the DNN-based VAD.

5.3 Noisy speech test

In order to test the DNN-based approach on noisy data, white noise is mixed to the

speech signals in both the development set and the evaluation set. We test three

noise levels, which are SNR=30, SNR=21 and SNR=12 respectively. Again, the

distribution of the frame-level posteriors produced by the DNN on the development

set is drawn in Figure 3. This figure clearly show that with a low SNR, the posteriors

are much crowding in low values, indicating the significant reduction of speech/no-

speech discrimination and the largely increased uncertainty with the DNN-based

VAD.

The results on the development are reported in Table 5.3. It can be seen that mix-

ing white noise leads to significant performance reduction for speaker recognition,

in spite of which VAD approach is used. Nevertheless, in all the test conditions,

the DNN-VAD system outperforms the baseline in a significant way. Interestingly,

the Bayesian approach outperforms the DNN-VAD system in all the conditions.

This indicates that with the high uncertainty associated with the VAD on noisy

data, the Bayesian treatment can contribute due to its nature as a ‘soft VAD deci-

sion’. Finally, we observe that with a very low SNR, all the three methods approach

to a random decision, which means that the spectral structure has been seriously

corrupted and so the performance is not related to VAD any more.

The results on the evaluation set is reported in Table 5.3, where the best threshold

θ = 0.3 has been employed. The same conclusions are drawn as from Table 5.3, that
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Figure 3 Distribution of the values P (v|xt) on the development set, with white noise mixed at
different SNRs.

EER%
System Threshold(θ) SNR12 SNR18 SNR21
Baseline - 48.30 44.54 39.33
DNN-VAD 0.5 47.24 35.54 27.47
DNN-VAD 0.3 47.49 35.48 27.26
DNN-VAD 0.1 49.65 40.07 29.25
Bayesian - 46.41 35.14 26.85

Table 3 The EER results on the development set, test at various SNR levels. The best results are in
bold face.

the DNN-VAD system outperforms the baseline consistently and significantly, and

the Bayesian approach contributes in the noisy conditions. Again, we emphasize that

the Bayesian approach possesses a big advantage in generalizability: it is parameter-

free and can be easily migrated to different acoustic conditions. This is impossible for

traditional VAD approaches, sine the threshold tuned in one condition is generally

unacceptable when migrating to other conditions.

6 Conclusions
This paper presented a DNN-based VAD for speaker recognition. The DNN is bor-

rowed from speech recognition and has been trained with a large amount of labelled

data, and therefore is highly powerful for speech/non-speech discrimination. Ad-

ditionally, a Bayesian treatment has been proposed to deal with the uncertainty

in VAD decision, particularly with noisy speech signals. The results show that

the DNN-based VAD is significantly better than the energy-based VAD, and the

Bayesian treatment contributes to scenarios with noisy speech. Particularly, the

Bayesian approach does not need a threshold as traditional VAD approaches do,

and therefore is easy to be migrated to different acoustic conditions.

EER%
System Threshold(θ) SNR12 SNR18 SNR21
Baseline - 48.59 42.07 37.14
DNN-VAD 0.3 45.90 36.54 27.95
Bayesian - 45.75 36.23 27.61

Table 4 The EER results on the evaluation set, test at various SNR levels. The best results are in
bold face.
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In spite of the promising results, the present research is still in a preliminary stage.

Particularly, we have not yet investigated the performance bound with a perfect

VAD, due to the lack of speech/no-speech labels of the data in hand. Furthermore,

our experiments show that in a low-SNR condition, VAD is not the deterministic

factor for performance. DNN-based noise removal is an interesting work that we are

focusing on.
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