Ordered binary speaker embedding

Jiaying Wang 2023/02/10

Content

- Abstract
- Related work
- MAE and MAE-R/S/RS
- Experiments

Abstract

• Background

- Storage
- Computational efficiency
- Contribution

ordered & binary speaker embedding

- Storage
 - data type: float32-->int
 - vector length: 256-->m (m \in (0,256))
- Computational efficiency
 - distance: cosine distance-->hamming distance
 - use binary tree to store enroll embeddings: O(Nm)-->O(m) (To be verified)

Related work

LSH

$$h_r(x) = \begin{cases} 1 & if \ r^T x \ge 0\\ 0 & otherwise \end{cases} \qquad \mathbf{Pr}[h(A) = h(B)] = 1 - \frac{\theta}{\pi}, \text{ where} \\ \theta = \cos^{-1}\left(\frac{|A \cap B|}{\sqrt{|A| \cdot |B|}}\right)$$

- Core contribution of LSH: map x-vector to 0 or 1 by the product of a hyperplane randomly sampled from a zero-mean multivariate Gaussian distribution by *b* hash functions
- Advantage: simple calculation method brings high computational efficiency
- Disadvantage: the randomly selected matrix leads to unstable experimental results

Related work

PCA

- a. X: (m,n)-->(n,m)
- b. demean X
- c. find the covariance matrix
- d. calculate eigen values and corresponding eigen vectors of the covariance matrix
- e. the eigen vectors are arranged into a matrix according to the corresponding eigenvalues, and the first *k* rows are taken to form a matrix P, where k is the first *k* principal components
- Advantage
 - the embedding is ordered
- Disadvantage
 - still dense vectors
 - linear

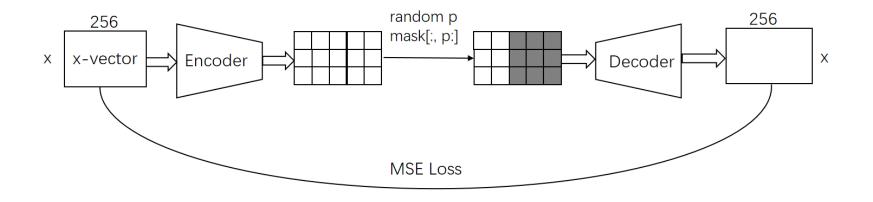
Related work

PCA-like AE

Algorithm 1 PCA Autoencoder algorithm. Note, we have described the algorithm with a simple gradient descent, but any descent-based optimisation can be used (Adam, Adagrad etc)
Data: X (dataset)
Parameters:
d_{max} : maximum latent space size
N : number of iterations to train each autoencoder
Result:
(E, D): trained PCA Autoencoder
Train first latent dimension:
for $i = 1 \dots N$ do
Train rest of latent dimensions:
for $k=2\dots d$ do
Train next latent dimensions, keeping the codes $j = 1 \dots k - 1$ fixed at each iteration :
for $i = 2 \dots N$ do

- Core contribution: train by step
- Advantage
 - ordered (the paper claims)
 - independent
- Disadvantage
 - large time cost to train the model
 - the embeddings are not ordered for our data

Masked AutoEncoder (MAE)



- Similar to PCA (differenct: the input X for pca can be reconstructed from embeddings)
- Advantage
 - the embedding is ordered
- Disadvantage
 - still dense vectors
 - linear (if only 1 layer without activation function)

dense-->binary: How?

- LSH
- Sample
- Regularizer
- Sample+ Regularizer

dense-->binary: How?

LSH

- use LSH on the latent code of MAE
- repeat the operation for 10 times and take the mean of topk results

dense-->binary: How?

- Sample
 - The masked part of MAE is converted into binary encoding conforming to Bernoulli distribution



masked code


```
dense-->binary: How?
```

```
Regularizer
```

• add a term to the loss function which calculates the distance to 1 for the unmasked part

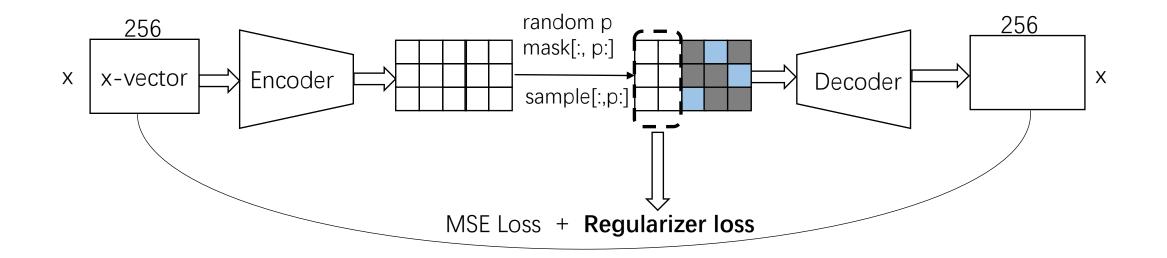
```
def hidden_loss(b):
    """
    compute hashing loss
    automatically consider all n^2 pairs
    """
    loss = (b.abs() - 1).abs().sum(dim=1).mean() * 2
    return loss

def AE_loss(mse_loss, input, hidden_layer, output, alpha,p):
    loss = mse_loss(input,output)+ alpha* hidden_loss(hidden_layer[:,0:p])
    return loss
```

```
dense-->binary: How?
```

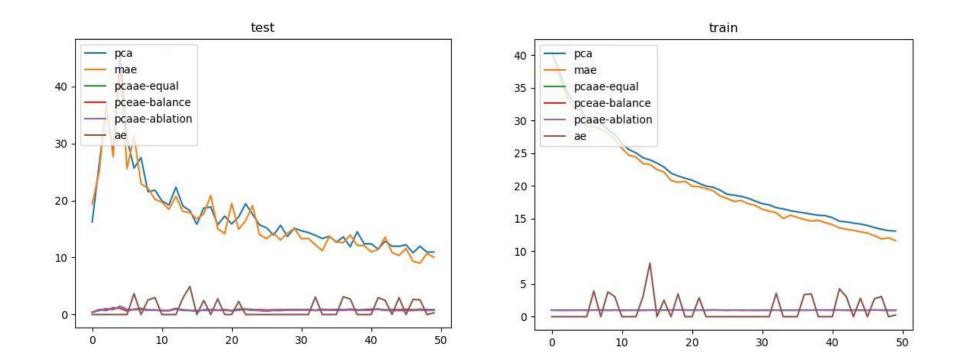
Sample + Regularizer

• combine sample and regularizer



- I. Prove the order of latent space
- II. Prove the improvement compared to baseline
 - I. dense
 - I. MAE
 - II. binary
 - I. MAE-R
 - II. MAE-S
 - III. MAE-RS

Prove the order of latent space: variance of latent code



Prove the improvement compared to baseline---dense

dataset =cnc	dense													
	Baseline	PCA	MAE											
	256dims	20dims	20dims	32dims	32dims	40dims	40dims	64dims	64dims	80dims	80dims	96dims	96dims	
Top1	0.706	0.529	0.544	0.619	0.624	0.644	0.649	0.679	0.683	0.691	0.691	0.697	0.695	
Тор3	0.800	0.678	0.687	0.743	0.751	0.762	0.767	0.781	0.785	0.792	0.789	0.796	0.794	
Тор5	0.844	0.736	0.748	0.796	0.802	0.806	0.811	0.827	0.829	0.837	0.833	0.837	0.836	

conclusion

• the shorter the code length, the better mae is (than pca)

Prove the improvement compared to baseline---binary

dataset =cnc	dense	binary							dense	binary						
	Baseline	LSH	PCA-LSH	MAE-LSH	MAE-S	MAE-R	MAE-RS	t=cnc	Baseline	LSH	PCA-LSH	MAE-LSH	MAE-S	MAE-R	MAE-RS	
	256dims	20bits	20bits	20bits	20bits	20bits	20bits		256dims	32bits	32bits	32bits	32bits	32bits	32bits	
Top1	0.706	0.157	0.183	0.185	0.232	0.227	0.218	Top1	0.706	0.241	0.276	0.278	0.326	0.339	0.327	
Тор3	0.800	0.266	0.323	0.324	0.381	0.386	0.368	Тор3	0.800	0.362	0.427	0.430	0.487	0.491	0.476	
Тор5	0.844	0.326	0.403	0.404	0.462	0.470	0.447	Тор5	0.844	0.424	0.505	0.509	0.562	0.569	0.553	

conclusion

- all of our method(MAE-LSH, MAE-R/S/RS) are better than baseline
- R/S/RS is better than LSH

Work to be done

- full/fix test on MAE-R/S/RS
- speed test