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ABSTRACT

Sequence to Sequence models, in particular the Transformer,
achieve state of the art results in Automatic Speech Recogni-
tion. Practical usage is however limited to cases where full
utterance latency is acceptable. In this work we introduce
Taris, a Transformer-based online speech recognition system
aided by an auxiliary task of incremental word counting. We
use the cumulative word sum to dynamically segment speech
and enable its eager decoding into words. Experiments per-
formed on the LRS2, LibriSpeech, and Aishell-1 datasets of
English and Mandarin speech show that the online system
performs comparable with the offline one when having a dy-
namic algorithmic delay of 5 segments. Furthermore, we
show that the estimated segment length distribution resem-
bles the word length distribution obtained with forced align-
ment, although our system does not require an exact segment-
to-word equivalence. Taris introduces a negligible overhead
compared to a standard Transformer, while the local relation-
ship modelling between inputs and outputs grants invariance
to sequence length by design.

Index Terms— Online ASR, word segmentation

1. INTRODUCTION

Having a natural conversation with a computer has fascinated
humankind for a long time. A key ingredient of this ambition
is granting computers the ability to recognise spoken words
with minimum latency. This allows a more interactive com-
munication, where the computer is able to interrupt a speaker
to acknowledge or ask for clarifications.

Despite the remarkable progress in end-to-end automatic
speech recognition technology based on sequence to sequence
neural network architectures [1], an unresolved issue is reduc-
ing the latency from full utterances down to a few words. This
sentence-level, or offline conditioning, is a fundamental bar-
rier to online decoding.

Humans develop the ability to segment words in con-
tinuous speech from the earliest stages of life [2]. There
is evidence that we integrate a set of acoustic, phonetic,
prosodic, and statistical cues in order to segment words in
fluent speech [3]. This leads us to ask whether the ability to
segment speech into word units with a neural network offers

the potential to help crack the challenge of decoding online.
This approach would take advantage of the monotonicity
of speech, allow the network focus on local properties, and
remove the offline conditioning.

To this end, we introduce Taris, a Transformer-based sys-
tem for online speech recognition that learns to model the lo-
cal relationships between text and audio in speech, relaxing
the global conditioning constraint of the original model. We
achieve this through self-supervision by introducing an aux-
iliary word counting task which facilitates the segmentation
of speech. Taris allows efficient minibatch training and intro-
duces a negligible overhead compared to the original Trans-
former model, without trading off the recognition accuracy.
We make our software implementation publicly available1.

2. BACKGROUND

A major technical challenge in online speech decoding is
formulating the problem in a fully differentiable framework.
Previous attempts include the Recurrent Neural Network
Transducer [4, 5, 6, 7], Neural Transducer [8, 9], segmental
conditional random fields [10, 11], hard monotonic atten-
tion [12, 13], segment attention [14, 15, 16], or triggered
attention [17]. However the models made use of dynamic pro-
gramming, training in expectation, or policy gradients, and
the authors report training difficulties. Our work retains the
segment attention design, but tackles the problem of speech
segmentation from a different angle. By learning to count
words through self-supervision, we introduce a mechanism
that allows end-to-end training using only backpropagation.

Recent proposals in online speech recognition address this
challenge by assuming one sub-word unit per segment [18,
19], or discover an inventory of sub-word units [20], a concept
previously explored in machine translation [21]. Our focus in
this work is on word units. In English, words allow a mono-
tonic and bijective mapping between their acoustic and sym-
bolic representations, however these properties do not hold at
the sub-word level due to the highly complex spelling rules
in English orthography. Moreover, words can be counted
in a deterministic way, which allows us to introduce a self-
supervision word counting task without requiring new labels.

1https://github.com/georgesterpu/Taris
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Fig. 1. Typical connectivity patterns at the sequence level for
representation learning

The sequence to sequence (seq2seq) architecture was pro-
posed in [22, 23]. An Encoder transforms a variable length
input sequence into a sequence of latent representations, and a
Decoder maps the latent sequence onto a target sequence of a
different length, aiming to establish a soft-alignment between
elements of the inputs and the targets. In attention-based
seq2seq networks, the conditional dependency of each out-
put token on the entire input sequence prohibits online decod-
ing. Yet, it has been shown that, once convergence is reached,
there are predominantly local relationships between the out-
put tokens and the audio representations in speech [24, 25].
Therefore, potentially incurring no loss in accuracy, a local
conditioning of the outputs on the inputs would break the of-
fline limitation and reduce the algorithmic latency. The new
goal is to learn robust associations between input and output
subsequences which stand for the same linguistic concepts.

The Transformer [26] is a good seq2seq candidate for
this task and we choose it as a foundation for our system
Taris. Unlike the recurrent neural network that uses causal
connections between timesteps (Figure 1a), the Transformer
allows feature contextualisation at the sequence level through
self-attention, illustrated in Figure 1b. This offline modelling
strategy provides a theoretical upper limit of the segmentation
performance. Furthermore, the self-attention connections in
the Transformer block can be adjusted to allow causal mod-
elling (Figure 1c) or non-causal modelling with a window
(Figure 1d). The window length is directly linked to the algo-
rithmic latency of Taris and its accuracy, and we investigate
this trade-off in Section 5.3.

3. MODEL ARCHITECTURE

3.1. Encoding

Taris takes as input a variable length sequence of audio vec-
tors a = {a1, a2, . . . , aN} and applies the Encoder stack of
the Transformer model defined in [26]. Because of latency
considerations, instead of the original full connectivity in Fig-

ure 1b, we use the type displayed in Figure 1d, with controlled
look-back eLB and look-ahead eLA frames. We denote the
outputs of the encoder as:

oA = Encode(a, eLB , eLA) (1)

Next, we apply a sigmoidal gating unit on each encoder
output oAi

to obtain a scalar score for each frame:

αi = sigmoid(oAi
WG + bG) (2)

where sigmoid(x) =
1

1 + exp(−x)
,WG ∈ Rh x 1, bG ∈ R1

We assign to every single input frame i a segment index
ŵi by taking the cumulative sum of α and applying the floor
function on the output:

ŵi =

 i∑
j=1

αj

 (3)

Namely, the first predicted segment is delimited by a cu-
mulative sum of α between 0 and 1, the second segment by
the same quantity between 1 and 2, and so on.

3.2. Decoding

During training, the Decoder stack receives the labelled
grapheme sequence y = {y1, y2, . . . , yL}, made of English
letters and the unique word delimiter SPACE. We assign to
every grapheme k a word index wk by leveraging the SPACE
tokens in the labelled sequence:

wk =

k∑
j=1

(yj == SPACE) (4)

Thus, whereas symbolic segmentation of speech uses a
unique SPACE token to separate words, acoustic segmenta-
tion flags word boundaries by tracking the frame locations
where the partial sum of the word counting signal αi passes
to the next integer value.

We modify the decoder-encoder connectivity of the At-
tention layer of [26] to allow our decoder to perform soft-
alignment over a dynamic window of segments estimated by
the encoder. More precisely, we only allow those connections
for which the following condition is met:

V = Ŵik ≤ (Wik + dLA) and Ŵik ≥ (Wik − dLB) (5)

In (5), dLA and dLB denote the number of segments the
decoder is allowed to look-ahead and look-back respectively.
The W and Ŵ matrices are obtained from the w and ŵ arrays
by applying the tile operation, which repeats one sequence
for a number of times equal to the length of the other one. In
more detail, V is a 2D matrix ∈ RNxL that defines the ad-
missible connections between any decoder timestep and any
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encoder timestep, acting as a bias on the decoder-encoder at-
tention. Setting V as a matrix of ones recovers the original
Transformer model. The extension to 3D tensors that include
the batch dimension is straightforward, offering Taris efficient
minibatch training and inference.

The decoder implements a traditional character level auto-
regressive language model that predicts the next grapheme in
the sequence conditioned on all the previous characters and
the dynamic audio context vector ck:

ck = Attention(keys =oA, query =oDk−1
, mask =V )

(6)

oDk
= Decode(y, ck) (7)

pk ≡ P (yk|ck, y1:k−1) = softmax(oDk
Wv + bv) (8)

whereWv ∈ Rh x v, bv ∈ Rv

In (8), v is the vocabulary size of 28 tokens. We measure
the difference between the estimated word sum Σŵ =

∑
i αi

and the true word count |w| =
∑

k(yk == SPACE) as:

Word Loss = (|w| − Σŵ)2 (9)

We define the training loss as:

CE Loss =
1

L

∑
k

−yk log(pk) (10)

Loss = CE Loss+ λ Word Loss (11)

In our experiments we used a scale factor λ = 0.01
found empirically. The self attention connections of the auto-
regressive Decoder are causal as depicted in Figure 1c.

Taris requires a negligible overhead in parameters (given
by the WG and bG variables in (2)) and operations (equations
(2)-(5)) over the original Transformer.

4. WHY LEARN TO COUNT WORDS

Proper lexical segmentation of speech depends on context
and semantics, as commonly illustrated by the example how
to wreck a nice beach sounding similar to how to recog-
nise speech. Thus, strategies incrementally scanning for
hard boundaries [18, 16, 19] are less suited to word units,
prompting [19] to perform beam search on the entire se-
quence of sub-word tokens estimated from each segment.
Instead, Taris has to develop intrinsic word counting mech-
anisms. One plausible strategy is to incrementally gather
lexical evidence at the sub-word level, and learn to represent
boundary-informative acoustic cues on a manifold where they
can be accumulated.

We conjecture that learning the ability to count words fa-
cilitates the segmentation of speech into words, and we dis-
cuss below our intuition behind it. In Figure 2 we illustrate
the word counting sub-problem to be solved by the network.
Starting in the bottom left corner, the network predicts scores

Cumulative
probability

Time steps

1

2

3

4

5

0

Fig. 2. Illustration of the word counting problem. Given a
spoken phrase something like a garden compost, the network
has to reach the correct word count 5 taking any path starting
in the bottom left corner. The blue path allows an easy seg-
mentation of speech into words. The green and dark orange
paths are possible, but do not facilitate segmentation.

for every audio frame in the sentence, and the cumulative sum
is promoted get as close as possible to the total word count,
shown with a red circle. There is a very large number of paths
that can be taken to reach the target count. However, when
trained on large amounts of naturally distributed speech, we
predict that Taris converges towards genuine word segmen-
tation by having the cumulative sum cross all the interme-
diate word boundaries shown with yellow circles. In other
words, the network may learn to self-normalise the accumu-
lated probabilities for each word regardless of their length or
cued structure.

We believe it suffices to train a system with the right
amount of speech data, with the following intuition. As words
appear in multiple contexts throughout a dataset, learning to
count words may then have a normalisation effect on the frac-
tion of Σŵ allocated to each word in a sentence. Each word
unit will approach a unitary mass allocation as its acoustic
realisation is seen more often in multiple contexts. For the
less frequent words, the correct allocation may happen by
marginalisation if the sentences they appear in contain rela-
tively more frequent words. Loosely speaking, it is the task
of solving a system of linear equations where the variables
are the partial sums corresponding to the acoustic frames
between two consecutive estimated boundaries.

Since we do not explicitly model the pauses between
words, and the convergence towards the segmental behaviour
is a mathematical conjecture without analytic proof for now, it
is likely to observe deviations in practice on learnt solutions.
However, Taris does not require a very strict approximation
of word boundaries to function correctly. Instead, it is suffi-
cient to just avoid frequent under- and over-segmentation, as
it directly impacts the model’s latency.
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5. EXPERIMENTS AND RESULTS

We first conduct our experiments on the audio part of the un-
constrained speech dataset LRS2 [27] for rapid prototyping,
and on the 100h partition of LibriSpeech [28] for empirical
validation at a larger scale. To extract audio features a in
Equation 1, we apply the log scale Short-time Fourier Trans-
form on the waveform inputs, following same procedure as
in [29] for noise corruption at 10, 0, and -5 db.

Our implementation of Taris is forked from the official
Transformer model in TensorFlow 2 [30]. We train our Lib-
riSpeech models for a total of 500 epochs at an initial learning
rate of 0.001, decayed to 0.0001 after 400 epochs. The train-
ing time is approximately 200 seconds for a single epoch of
LibriSpeech 100h on an Nvidia Titan XP GPU. The LRS2
models were trained with the same learning rates for 100 and
20 epochs respectively, on each noise level.

5.1. Neural network details

Our models use 6 layers in the Encoder and Decoder stacks,
a model size dmodel ≡ h = 256, a filter size dff = 256, one
attention head, and 0.1 dropout on all attention weights and
feedforward activations. The models occupy 25 MB on disk.

5.2. The End-of-sentence (EOS) token

During our initial experiments, we noticed that traditional
evaluation and training strategies in neural speech recog-
nition are commonly misusing the EOS token, making it
difficult to evaluate online systems. The commonly used
ASR datasets are a collection of variable-length utterances,
and the system’s accuracy is computed for each utterance
using an edit distance based algorithm. These utterances
are often fragments from full spoken sentences, such as the
one illustrated in Figure 2, that were cropped using voice
activity detection algorithms (e.g. in LRS2), and sometimes
the fragmentation includes the ending and the start of two
consecutive sentences, with the punctuation removed from
the ground truth transcription (e.g. in LibriSpeech). In other
words, the ASR system does not receive full sentence units,
and cannot develop the linguistic notion of an end of sen-
tence. In our experiments it became obvious that one way the
ASR model differentiates between an EOS token and a word
delimiter (SPACE) likely comes from the apriori knowledge
of the sentence length, and that EOS becomes more likely
as the decoder-encoder alignment distribution advances to-
wards the last remaining audio frames in the sentence. The
aspect above becomes problematic in an online setting, as
the decoder is fed with a limited acoustic context. Given the
nature of the dataset utterances, an online decoder does not
know when to stop the decoding process, as EOS cannot be
estimated even spuriously anymore. Online decoding would
often stop after just a few words in an utterance, biasing the
accuracy on longer sentences.

To circumvent this problem, we made two important
changes to the traditional model. First, we replaced the EOS
token in the labels, which cannot be predicted reliably, with
the SPACE token. Second, we modified the stopping condi-
tion of the beam search inference decoder as follows: instead
of stopping when all beams reach the EOS token, it now
stops when the decoder predicts as many words as there were
estimated by the audio encoder. This new strategy is mostly
beneficial to the evaluation procedure, but should also be use-
ful in practice as it allows the decoder to emit a controllable
number of words. With this change, we are able to evaluate
the error rate of Taris on full test sentences for which we lack
any label alignments.

5.3. Learning to count words
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Fig. 3. Offline system evaluation for an increasing length of
feature contextualisation in the encoder

We first investigate to what extent a sequence to sequence
Transformer model can learn to count the number of words
from audio data on LRS2. We train multiple models and grad-
ually increase the number of encoder look-ahead frames eLA

to measure the variation of the Word Loss as more future
context becomes available. We see in Figure 3a that the mean
squared word count error is sub-unitary in clean speech and
10db noise, i.e. the estimated count is less than one word
away from truth. This suggests that words can be counted rel-
atively well from acoustic speech. In addition, using a future
context length of 11 frames offers the lowest counting error
under all noise conditions. In Figure 3b we plot the mean
Character Error Rate achieved by all our systems, including
the offline Transformer baseline without the auxiliary Word
Loss, and we observe no significant difference, with the 95%
confidence intervals of the mean errors between 1% and 1.4%.
Therefore, this auxiliary task is not detrimental to the original
accuracy obtained on LRS2 using only the cross-entropy loss.

5.4. Online ASR decoding

The decoder in our previous experiment had access to the en-
tire encoder memory. For our online model we opt for an
encoder lookahead eLA of 11 frames and infinite lookback
eLB = ∞, as we showed in Section 5.3 that there are dimin-
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ishing gains beyond this threshold. This roughly corresponds
to an encoding latency of 330 msec for each encoder layer.

In this experiment we evaluate the error rate of Taris on
LRS2 for an increasing number of decoder look-ahead seg-
ments dLA, while setting the look-back value dLB =∞. For
a practical online model it may be a good trade-off to limit
the decoder look-back context to a single sentence when tran-
scribing continuously. We plot the Character Error Rate in
Figure 4 for an increasing number of acoustic segments that
the decoder is allowed to attend to. We notice that there are di-
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Fig. 4. Online decoding error rate on LRS2. We fix eLB =
∞, eLA = 11 frames, dLB = ∞ and we only allow dLA to
vary.

minishing returns after a context look-ahead dLA of 4 words.
The overall accuracy beyond this threshold is comparable to
the offline systems shown in Figure 3b.

5.5. Evaluation on longer sentences

In the previous experiments we have used the LRS2 dataset
for rapid prototyping. However, since it contains many short
sentences, the potentially higher decoding error rate of Taris
on the longer sentences might have little effect on the reported
average error rate. We re-train and evaluate our models on the
100 hour clean partition of the LibriSpeech dataset, display-
ing the mean error and 95% confidence interval (CI) around
the mean in Table 1.

First, we notice that the systems achieve an error rate simi-
lar to the one obtained on LRS2, despite the increased amount
of data, suggesting that further gains are possible for larger
model sizes. We also notice that the word loss can be slightly
detrimental to the overall accuracy for the same network ca-
pacity, particularly for the models with unbounded attention
span. This prompts a deeper investigation into the interplay
between the cross entropy and word counting losses, as our
constant scale factor λ is likely a less than optimal solution to
this multitask problem.

Next, we compare the distributions of the segment lengths
estimated by Taris and those estimated with the pre-trained
Montreal forced aligner [31], both plotted in Figure 5. Not
only are the histograms highly overlapped, but the one pro-
duced by Taris is in line with the average speaking rate of
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Fig. 5. Segmentation length distribution (in milliseconds) of
Taris compared to the reference provided by the Montreal
forced aligner

read speech. The small differences between the reference
and hypothesis are likely owed to the short silences between
words which were excluded from the reference, whereas
Taris does not explicitly model silences and includes them
into segments. Latency has not received sufficient considera-
tion in prior work to facilitate a direct comparison, as systems
were trained with offline encoders [17] or large receptive
fields [16], relied on beam search over the output distribu-
tion [19], or used phoneme units [8]. Very recent work com-
bining a weaker online model with an offline rescorer [32]
that allows to revise online hypotheses with a final hypothesis
introduces the notion of end-pointing latency. The offline
rescorer is triggered after the utterance has been determined
to be finished, that is when a threshold period has elapsed
after a suspected end of utterance without further speech ac-
tivity. Since our model is fully online and does not have to
wait to rescore, this metric is not applicable to our system.

5.6. Evaluation on Mandarin speech

Since the word segmentation strategy in Taris is tailored for
English, we are interested in extending the principle to Man-
darin speech. Unlike English, Mandarin is characterised by a
low number of morphemes per word and has almost no inflec-
tional affixes, being considered a highly analytic language. In
addition, the commonly used writing system belongs to the
scriptio continua style, with no delimitation between words.
On these grounds, we make a structural change in Taris: in-
stead of learning to count words (spaces between them), we
let the system count the number of characters, similar to the
quantity loss used in [19]. This would drive the system to
segment the acoustics associated with each character, which
is almost always equivalent to a syllable.

For our experiment we use the Aishell-1 dataset [33],
which contains 165 hours of fluent speech recordings from
400 speakers coming mostly from the Northern area of
China, and covers a broad range of topics. The transcrip-
tion file comprises an inventory of 4333 characters, which
will determine the final output size of the decoder. Since the
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Table 1. System evaluation on LibriSpeech 100h clean partition.

parameters CER Word LossModel eLB eLA dLB dLA mean [%] 95% CI [%]

Transformer [26] ∞ ∞ ∞ ∞ 13.37 0.444 N/A
Transformer + Word Loss ∞ ∞ ∞ ∞ 14.64 0.451 0.92
Taris : infinite look-back ∞ 11 ∞ 5 15.70 0.451 1.12
Taris : finite look-back 11 11 5 5 13.83 0.451 0.76

labels also include candidate blank spaces between words,
we also evaluate Taris at the word level as we did on En-
glish. Despite the larger dataset size, we maintain the same
Transformer size as before for faster prototyping. We label
the different parametrisations of Taris as follows: WIDE:
eLB = eLA = 11 frames, dLB = dLA = 5 segments,
MEDIUM: eLB = eLA = 3, dLB = dLA = 5, NARROW:
eLB = eLA = 2, dLB = dLA = 2.

Figure 6 shows the error rates of the offline and online
systems on the Aishell-1 corpus. Despite the small model
size, the absolute decoding accuracy is comparable with the
baseline results in [33] obtained with the Kaldi toolkit. We
notice that Taris does a much better job at learning to count
the number of characters than the number of words, with our
NARROW model obtaining a counting error of 0.2538. Since
a Chinese character almost always corresponds to a single syl-
lable, this result suggests that syllables may be easier to seg-
ment in fluent speech than words. Furthermore, the syllable
level segmentation allows both the encoder and the decoder of
Taris to use relatively low context lengths and further reduce
the overall latency. Not shown in the figure, the error rate of
a word counting Taris model is approximately 40%, implying
that a good unit segmentation is essential for online decoding.

6. CONCLUSION

We have proposed a simple, efficient, and fully differentiable
solution for online speech recognition that does not require
additional labels. Taris is inspired from early language ac-
quisition in infants, and aims to segment a speech stream by
learning to count the number of words therein. We show that
our method matches the accuracy of an offline system once
it listens to 5 dynamic segments. Lowering this latency re-
mains a topic for exploration, e.g. by gradually reducing the
look-ahead parameter dLA later in training, explicitly mod-
elling silences, or investigating the role of context, grammar,
and semantics in lexical recognition.

Generalising to sentences of different lengths from the
ones seen in training has recently been identified as a major
problem for neural online speech recognition systems [34,
35]. By modelling only the local relationships in speech
through finite look-back and look-ahead, we preserve the
same property of the Neural Transducer [8] to effectively
decouple the sentence length from the learnt representations,
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while allowing adaptive segments and simpler training.
It can be argued that Taris exploits human knowledge of

the speech signal structure and embeds the concept of words
and the local acoustic relationships, instead of being a more
generic, self-organising neural network. Yet, the local pro-
cessing of speech is merely the one dimensional equivalent
of local convolutions applied to images, where the objects are
replaced by words. Moreover, one-dimensional convolutions
are commonly used in speech recognition [36, 37, 38, 39].
Given their major impact in research despite their lack of in-
variance to orientation, scaling, or even small perturbations,
there is still much to be learned from engineered models in
the pursuit of artificial general intelligence.
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