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Abstract

Decision making is an important component in a speaker verification system.
For the conventional GMM-UBM architecture, the decision is usually conducted
based on the log likelihood ratio of the test utterance against the GMM of the
claimed speaker and the UBM. This single-score decision is simple but tends to
be sensitive to the complex variations in speech signals (e.g. text content,
channel, speaking style, etc.). In this paper, we propose a decision making
approach based on multiple scores derived from a set of cohort GMMs (cohort
scores). Importantly, these cohort scores are not simply averaged as in
conventional cohort methods; instead, we employ a powerful discriminative model
as the decision maker. Experimental results show that the proposed method
delivers substantial performance improvement over the baseline system, especially
when a deep neural network (DNN) is used as the decision maker, and the DNN
input involves some statistical features derived from the cohort scores.
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1 Introduction
Speaker verification aims to verify claimed identities of speakers, and has gained

great popularity in a wide range of applications including access control, forensic

evidence provision and user authentication. After decades of research, lots of pop-

ular speaker verification approaches have been proposed, such as Gaussian mixture

model-universal background model (GMM-UBM) [1], joint factor analysis (JFA) [2]

and its ‘simplified’ version, the i-vector model [3]. Accompanied with these models,

various back-end techniques have also been proposed to promote the discriminative

capability for speakers, such as within-class covariance normalization (WCCN) [4],

nuisance attribute projection (NAP) [5] and probabilistic LDA (PLDA) [6], etc.

These methods have been demonstrated to be highly successful. Recently, deep

learning has been applied to speaker verification and gained much interest [7, 8].

Within a speaker verification system, decision making is an important componen-

t [9]. To make a decision, the verification system first determines a score for the

test utterance that reflects the confidence that the utterance is from the claimed

speaker, and then compares the score with a predefined threshold. In a typical

GMM-UBM system, the score is often computed as the log likelihood ratio that the
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test utterance being generated from the GMM of the claimed speaker and the UBM.

This single-score decision is simple and efficient, but it tends to be quite sensitive

to variations in speech signals, e.g., in terms of text contents, channel conditions

and speaking styles. This sensitivity means that choosing an appropriate threshold

is rather difficult, or leading to error-pron decisions.

To deal with this score variation, various score normalization techniques have been

proposed. Most of the normalization approaches, according to [10], can be explained

using the Bayes’ theorem. Among these approaches the cohort normalization is

particular interesting. This approach chooses a set of cohort speakers who are close

to the genuine speaker, and for each test utterance, it computes a set of ‘cohort

scores’ on the models of these speakers. These cohort scores then replace the UBM

to normalize the score of the test utterance against the claimed speaker [11, 12].

Using cohort models tends to model the alternative hypothesis more accurately,

due to its more flexible structure compared to a single UBM. However, the existing

methods based on cohort models do not fully utilize the information involved in the

cohort scores: they are just simply averaged to normalize the target score, which is

still a single-score approach.

This paper presents a new cohort approach that utilizes the cohort scores in a

more effective way. Specifically, we propose to make decisions on the whole cohort

scores (formulated as a score vector), and employ a powerful discriminative model

to make the decision. Our assumption is that the knowledge involved in the cohort

scores is more than a mean average, but as complex as their distributions, their

ranks, spanning areas, etc. Fully utilization of these rich information results in a

true multi-score decision making, which is expected to be more reliable than the

traditional single-score approach.

The technique presented in this paper involves three steps: (1) Firstly, a set of

cohort models is constructed by a clustering algorithm; (2) Secondly, for each test

utterance, scores are estimated among the claimed speaker GMM, the global UBM

and the cohort GMMs; (3) Finally, a classification model (SVM or DNNs) is em-

ployed to make the decision based on some features derived from the scores derived

above.

The layout of this paper is organized as follows. Section 2 presents the proposed

cohort-based decision making framework. The experiments are presented in Sec-

tion 3, and Section 4 concludes the paper.

2 Cohort-based decision making framework
In a typical GMM-UBM speaker verification system, the score likelihood ratio of

a test utterance is computed over the GMM of the claimed speaker model and

UBM. Then the likelihood ratio will be compared with a predefined threshold. If it

is higher than the threshold, the test utterance will be accepted, else rejected. We

argue that this naive decision making approach is unreliable and less robustness

because this likelihood ratio only describes the distance between the claimed GMM

and UBM, and it does not make use of the world speakers and corresponding score

information. Therefore, we design a cohort-based decision making framework, as

shown in Fig. 1. This framework is made up of three parts: cohort selection, feature

design and discriminative model training.
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Figure 1 The cohort-based decision making framework.

2.1 Cohort selection

A vector quantization (VQ) method [13] based on the K-means algorithm was

utilized to conduct the speaker model clustering. The centroid of each cluster rep-

resents a reference speaker, and all the reference speakers build the ‘cohort’. We

chose a weighted K-L distance to measure the distances among Gaussian mixture

models, given by:

D(λ1, λ2) =

M∑
i=1

wiKL(N1
i , N

2
i ) (1)

KL(N1, N2) =
1

2
(µ1 − µ2)T (Σ−1

1 − Σ−1
2 )(µ1 − µ2) (2)

where λ1 and λ2 are two Gaussian mixture models, and wi is the weight of ith

Gaussian component. Note that, for fast computation, only the mean parameters

are adapted in the GMM-MAP process, while the weights and variances of the

GMMs are the same as UBM. Equ. 2 is used to measure the distance between two

multi-dimensional Gaussian distributions.

Given a set of speaker GMMs λ = (λ1, λ2, ..., λn) and λci that is the cluster

centroid where speaker i is assigned to. The optimization objective is to minimize

the within-class cost J , and finally each cluster centroid is regarded as one ‘cohort’

model.

J =
1

N

N∑
i=1

D(λi, λci) (3)
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2.2 Feature design

Once the cohort models (CGMMs) have been determined, a set of cohort scores

are calculated on the claimed speaker GMM, UBM and CGMMs respectively for

each test utterance. We seek to use these cohort scores to explore some potential

knowledge and design more discriminative features on genuine and imposter speaker

models. In this part, three cohort-based score features are discussed.

2.2.1 Cohort-based score normalization

The inspiration of this feature comes from the conventional score normalization

techniques [10]. For a test feature vector X, the normalized score L̃λ(X) is given

as follows:

L̃λ(X) =
Lλ(X)− µλ

σλ
(4)

where λ represents a claimed speaker model, and µλ, σλ is estimated from the

cohort scores.

2.2.2 Rank position

Assuming the size of cohort is K, for each test trial, a (1+K)-dimensional score

vector is calculated based on GMM and CGMMs. And we think that the likelihood

scores on the genuine speaker GMMs are at the top-rank position in the (1+K)-

dimensional score vector, while for the imposter speakers, it lies in a random rank

position.

2.2.3 Rank of score differences

Similar assumption with the rank position, we also believe that the distribution

of cohort scores on the genuine speaker models is different from that on imposter

speaker models. For each test utterance, the score feature is calculated by subtract-

ing the likelihood score on the claimed speaker GMM from that on each cohort

CGMM. It describes a high-dimensional cohort-based score distribution instead of

the UBM space. After ranking it, this score feature also covers the information

of rank position, and has strong discriminability on genuine and imposter speaker

models. This assumption will be verified in Section 3.3.

2.3 Discriminative model training

Based on these features derived from the cohort scores, discriminative models (e.g.,

support vector machine (SVM) and deep neural networks (DNNs) can be directly

optimize with respect to the speaker verification task, i.e., the genuine/imposter

speaker decision.

3 Experiments
3.1 Database

The experiments are performed on a database called ‘CSLT-DSDB ’ (Digit String

Database) that was jointly created by CSLT (Center for Speech and Language Tech-

nologies), Tsinghua University and Beijing d-Ear Technologies, Co. Ltd. The text
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of all recordings is the text-prompted digit strings. The recordings were conducted

using different mobile microphones, sampled at 16 kHz with 16-bit precision.

• Training set: It contains an approximate size of 1 GB data (about 200 males

and 200 females) recorded in an ordinary office environment. And it is used

for the UBM training.

• Development set: It contains 280 enrollment utterances covering 145 speakers

and 2, 874 test utterances. And it is used for cohort selection and feature

design.

• Evaluation set: It involves 92 speakers. For each speaker, there are text-

prompted digit strings of about 40 seconds in length for speaker model train-

ing; and 8-16 randomly generated digit strings each of which is an 8-digit string

for verification. There are overall 1, 220 test utterances and 1, 220 target trials

and 111, 020 non-target trials.

3.2 Experimental setup

The acoustic feature was the conventional 39-dimensional Mel frequency cepstral

coefficients (MFCC), which involves 13-dimensional static components plus the first

and second order derivatives. The UBM consisted of 256 Gaussian components

and was trained with the training set. Note that this setting is ‘almost’ optimal

in our experiments, i.e., using more Gaussian components cannot improve system

performance. And the baseline of GMM-UBM system on the evaluation set was

1.621% in terms of EER (Equal Error Rate).

Besides, with the maximum a posterior (MAP) algorithm, 280 speaker GMMs

were adapted from UBM. And The K-means algorithm was used to cluster the 280

speaker GMMs into a suitable cohort. Fig. 2 presents the function between the

number of clusters and the clustering cost J . It can be observed that when the

number of clusters exceeds 10, the clustering cost J has already been converged.

Therefore, the size of cohort was set to 10.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

The Number of Clusters

C
lu

s
te

ri
n
g
 C

o
s
t

Figure 2 The function between the number of clusters and the clustering cost.
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In order to select the discriminative score feature, 6, 115 target trials and 5, 748

imposter trials were selected from the development set. Considering the unbalanced

data problem [1], only the top two scores were selected from all the imposter speaker

models.

3.3 Feature design

3.3.1 Cohort-based score normalization

According to Equ. 4, the normalized score for each test was calculated, and the

system performance was 1.639% in EER. It shows reasonable performance and can

be considered as an available score feature.

3.3.2 Rank position

From Fig. 3, we observed that this rank position has certain discriminability. Nearly

all the likelihood scores on the genuine speaker GMMs are at the first rank position,

while for imposter speaker models, the rank position distribution approximately

satisfies a Gaussian distribution with the mean of 5.
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Figure 3 The statistical histogram of rank-position distribution.

3.3.3 Rank of score differences

To provide an intuitive understanding of the discriminative capability of this feature,

the rank of score differences of all the test trials are plotted in a two-dimensional

space via T-SNE [14]. As shown in Fig. 4.

It can be seen that there exists a distinct non-linear boundary between genuine

speaker models and imposter speaker models. That is to say, this ‘rank of score

differences’ has strong discriminative capability on genuine and imposter speaker

models.
[1]The number of target samples and imposter samples will be highly unbalanced,

one or some few target samples against large amount of imposter samples. And

learning from such unbalanced data will result in biased SVM/DNNs models.
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Figure 4 The distribution of the ‘sorted score differences’ on genuine speakers and imposter
speakers (via T-SNE).

3.4 Discriminative model training

With these cohort-based score features, discriminative models can be optimized with

respect to discriminating the genuine/imposter speakers. In this paper, both the

SVM and DNNs models were trained as the decision maker for speaker verification

system.

3.4.1 SVM-based scoring

The SVMs were trained for each cohort-based score feature with the linear kernel

function. Results are shown in Table 1 on condition of C1-C3. Note that ‘norm’ is

the ‘Cohort-based score normalization’, ‘r-pos’ is the ‘Rank position’, ‘r-diff’ is the

‘Rank of score differences’ and
√

represents that related features are chosen as the

input of SVMs.

Table 1 The SVM-based discriminative scoring evaluation system.

Condition score norm r-pos s-diff EER(%)
C1

√ √
– – 1.598

C2
√

–
√

– 1.574
C3

√
– –

√
1.475

C4
√ √ √

– 1.625
C5

√ √
–

√
1.475

C6
√

–
√ √

1.475
C7

√ √ √ √
1.479

3.4.2 DNN-based scoring

The DNN models were trained with these cohort-based score features, and the

decision was made by logistic regression model at the soft-max layer. Note that for

different input feature, the experimental results can be optimized with tuning of the

DNNs structure such as the number of hidden units and hidden layers. Whereas,

in order to unify the experimental configuration, we just set the number of hidden
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layer units 10 times as much as the dimension of input features, and there is only

1 hidden layers. The results are shown in Table 2 on the condition of C1-C3.

Table 2 The DNN-based discriminative scoring evaluation system.

Condition score norm r-pos r-diff EER(%)
C1

√ √
– – 1.556

C2
√

–
√

– 1.639
C3

√
– –

√
1.148

C4
√ √ √

– 1.639
C5

√ √
–

√
1.230

C6
√

–
√ √

2.049
C7

√ √ √ √
1.077

3.4.3 Feature combination

From Table 1 and Table 2, it can be seen that in condition C1-C3, both the SVM-

and DNN-based scoring offer clear performance improvement than the GMM-UBM

baseline 1.621%. Therefore, a feature combination scheme was proposed by concate-

nation these score features together. Experiment results are shown on condition of

C4-C7. It can be observed that the performance of this simple feature combination

is inconsistent, and we attribute it to the feature redundancy because all these fea-

tures are embedded from the cohort scores. Besides, the overall feature combination

C7 on DNN-based scoring system obtains the best performance.

4 Conclusions
This paper presents a decision making method based on cohort scores instead of the

traditional single decision score. Some potential discriminative features are embed-

ded from cohort scores, and then more powerful discriminative models are trained

as the decision maker. Experimental results show that the proposed ‘rank of score

differences’ with SVM/DNN-based scoring model can obtain stable and better sys-

tem performance than the GMM-UBM baseline. Moreover, a feature combination

scheme is proposed to further improve system performance. Future work involves

designing more robustness score-level discriminative features and more reasonable

cohort selection approaches.
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