

*End-to-End*

*Keywords Spotting*

Ying Shi

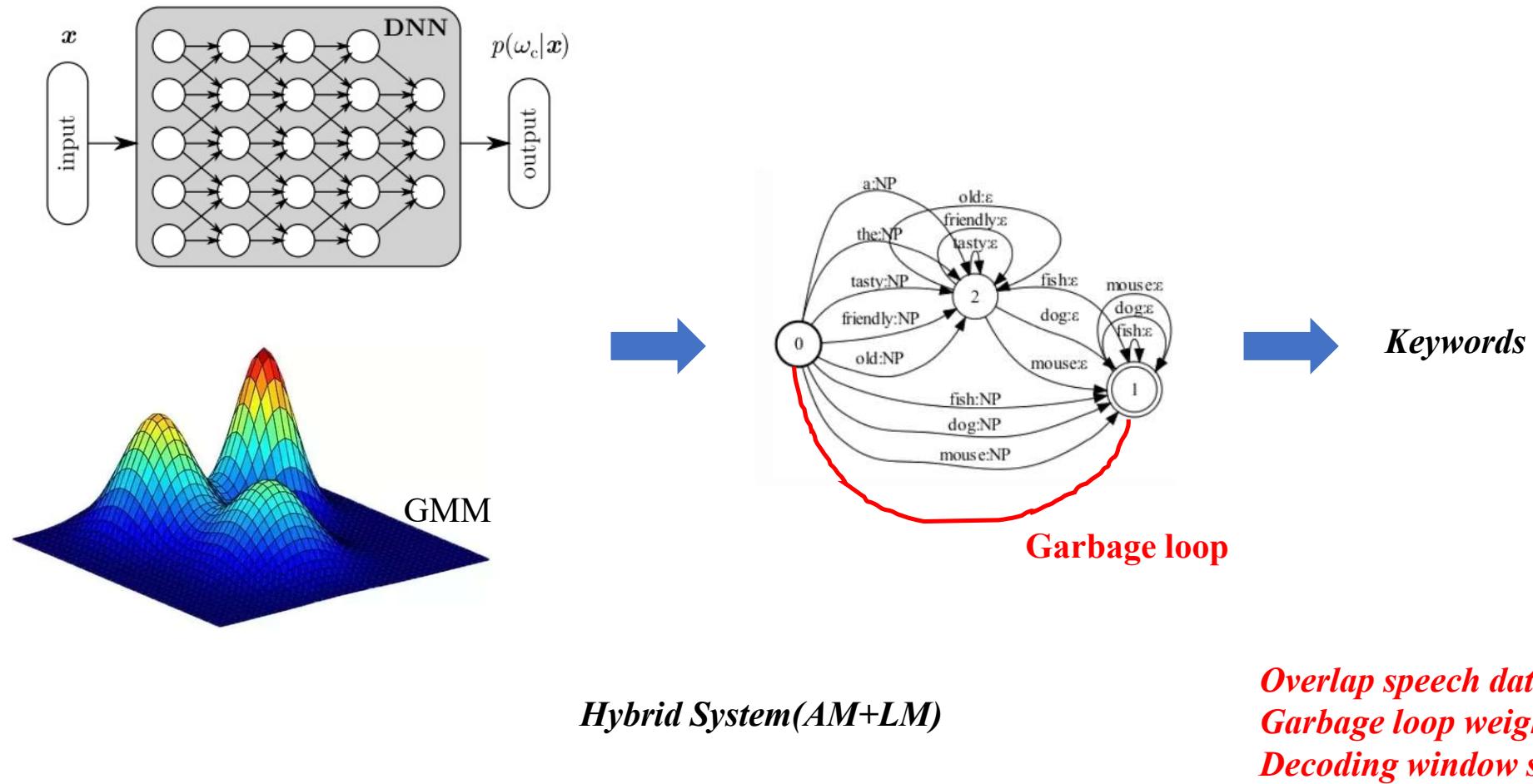
2021.11.29

## Outline:

- Some Keywords Spotting methods
- Cross Modality view
- Cross Modality Attention E2E KWS

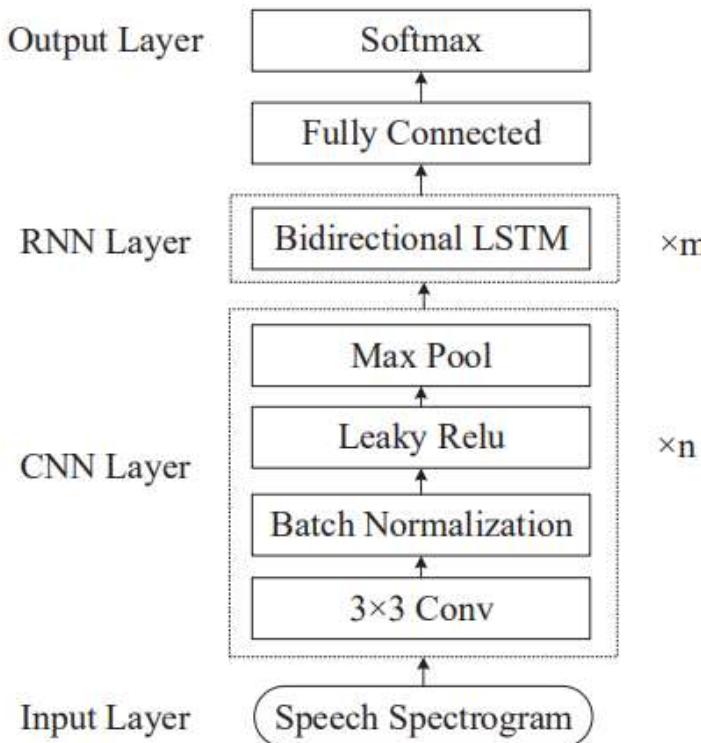
## Keywords Spotting

### >>> Hybrid ASR System



## Keywords Spotting

### >>> e2e ASR System(CTC)



**Fig. 1.** The architecture of CRNN

In our work, all Chinese characters are first converted into tonal syllables. Then a mapping dictionary is created for all keywords character syllables. All syllables that are not in the dictionary are treated as the same label, which is defined as the **filler symbol**. Besides, to better represent pauses between words, a syllable-boundary is inserted between syllables. Finally the network output labels include all keyword character tonal syllables, a filler symbol, a syllable-boundary, and a CTC blank.

**Table 2.** Comparison of baseline and CRNN-CTC method

| <b>13 keywords</b> | <b>FRR</b> | <b>FAR</b>          |
|--------------------|------------|---------------------|
| RNN-CTC            | 9.43%      | 0.47 times per hour |
| CRNN-CTC           | 5.35%      | 0.26 times per hour |
| <b>20 keywords</b> | <b>FRR</b> | <b>FAR</b>          |
| RNN-CTC            | 9.99%      | 0.24 times per hour |
| CRNN-CTC           | 6.37%      | 0.17 times per hour |

**Table 3.** Performances of CRNN-CTC based KWS using different modeling units

| <b>13 keywords</b> | <b>FRR</b> | <b>FAR</b>          |
|--------------------|------------|---------------------|
| tonal syllables    | 5.35%      | 0.26 times per hour |
| characters         | 7.45%      | 0.27 times per hour |
| keywords           | 5.22%      | 0.84 times per hour |
| <b>20 keywords</b> | <b>FRR</b> | <b>FAR</b>          |
| tonal syllables    | 6.37%      | 0.17 times per hour |
| characters         | 8.16%      | 0.20 times per hour |
| keywords           | 6.35%      | 0.55 times per hour |

**Overlap Speech data?**  
**KWS Training Data?**

## Keywords Spotting

---

### >>> e2e kws

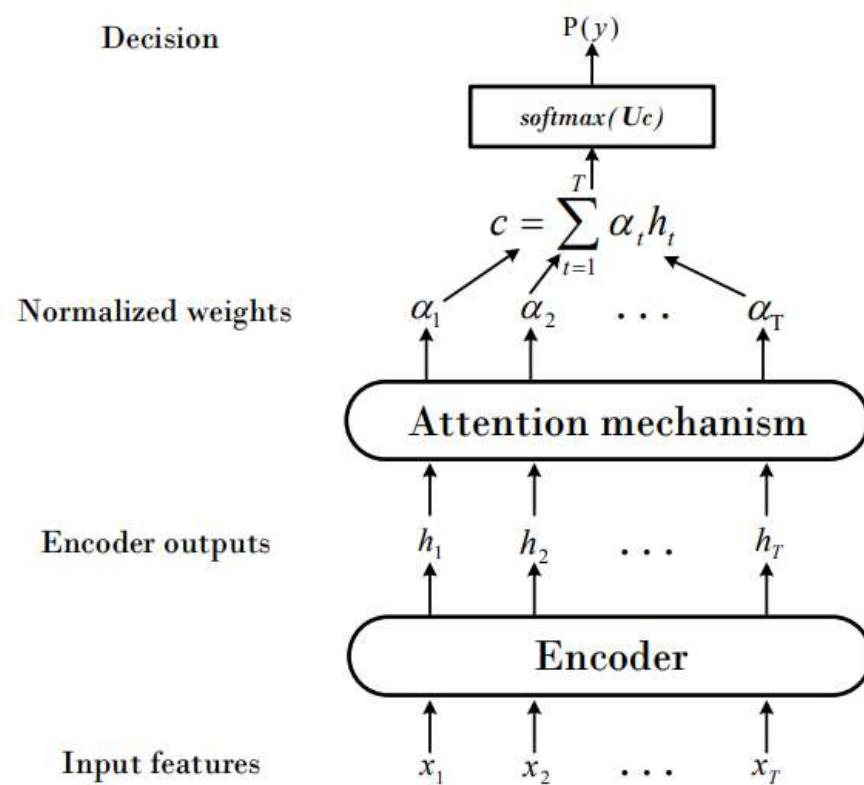
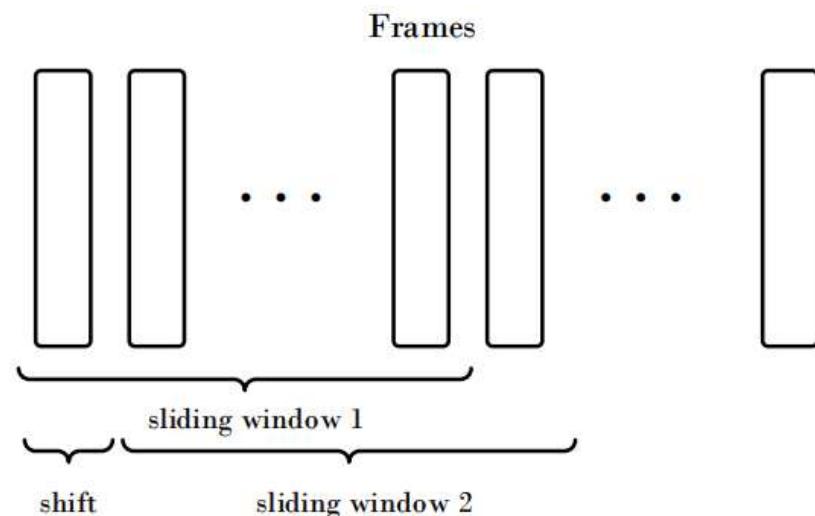


Figure 2: Sliding windows used in decoding.

Table 3: Performance of adding convolutional layers in the GRU (CRNN) attention-based model with soft attention. FRR is at 1.0 false alarm (FA) per hour.

| Channel | Layer | Node | FRR (%)     | Params (K) |
|---------|-------|------|-------------|------------|
| 8       | 1     | 64   | 2.48        | 52.5       |
| 8       | 2     | 64   | 1.34        | 77.3       |
| 16      | 1     | 64   | <b>1.02</b> | 84.1       |
| 16      | 2     | 64   | 1.29        | 109        |

**KWS Training Data?**

## Keywords Spotting

---

### >>> Query by Example QbE

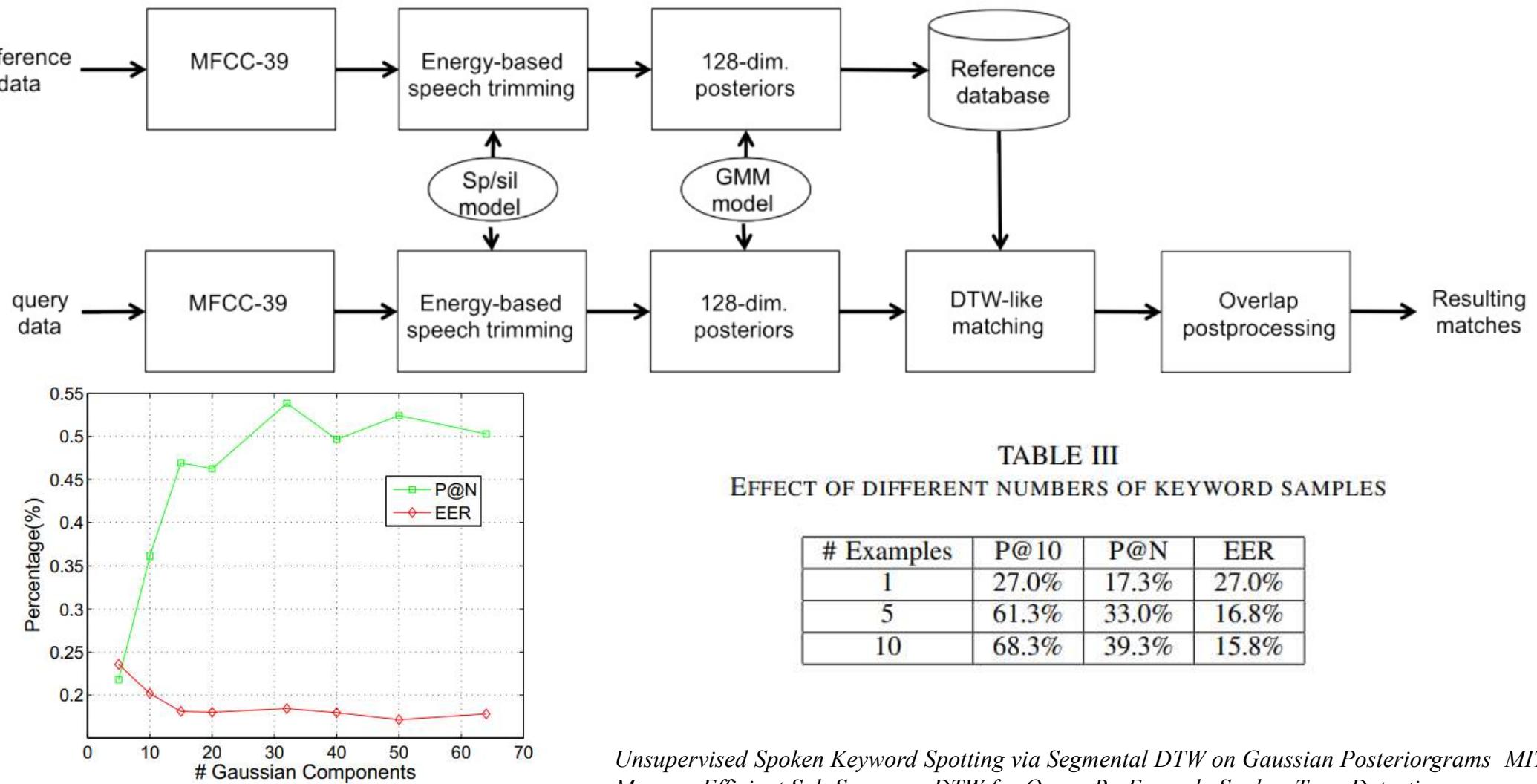


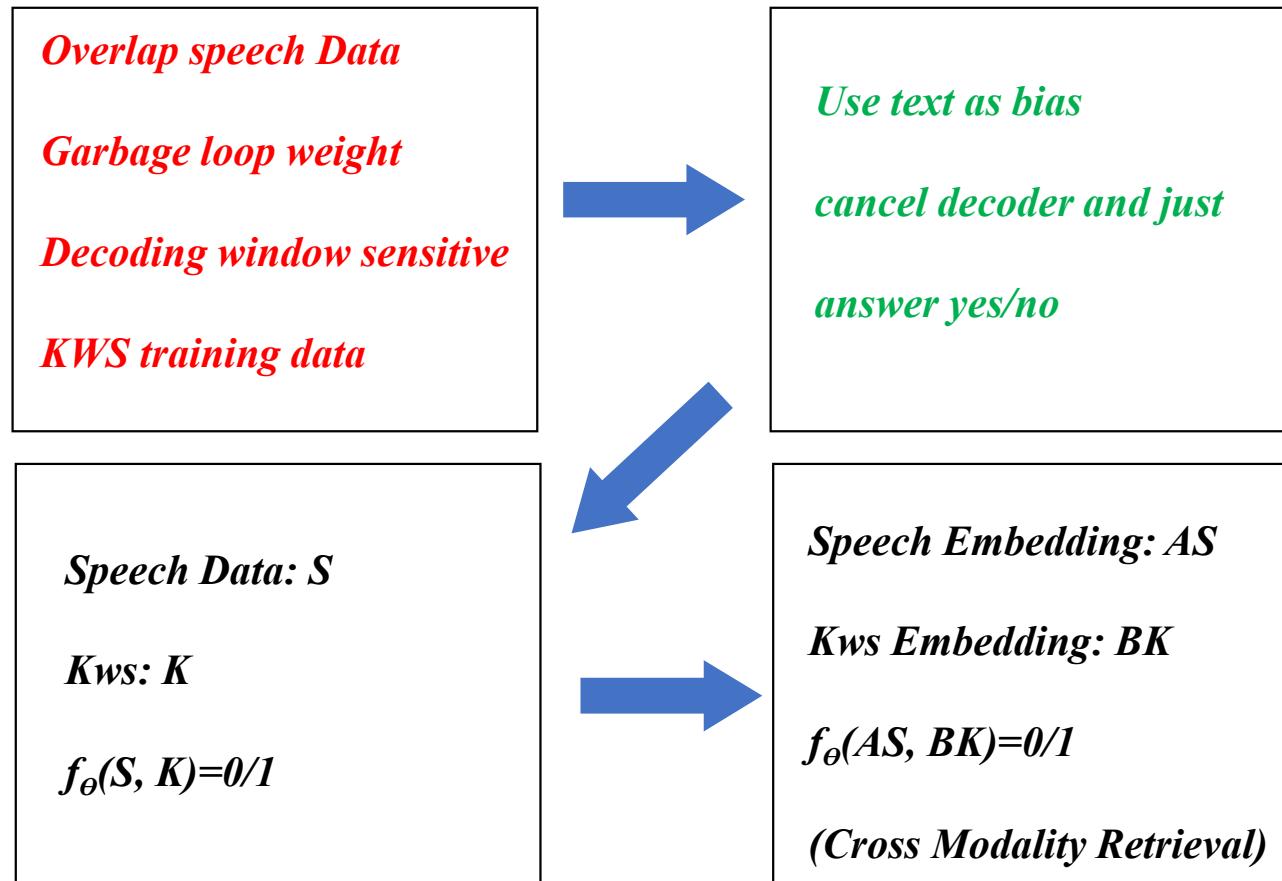
Fig. 5. Effect of different numbers of Gaussian components

*Unsupervised Spoken Keyword Spotting via Segmental DTW on Gaussian Posteriorgrams MIT Memory Efficient Sub-Sequence DTW for Query-By-Example Spoken Term Detection*

## Cross Modality View

---

>>>



## *Cross Modality View*

---

>>>

CCA & KCCA: Canonical correlation analysis; An overview with application to learning methods

CFA & LSI: Multimedia Content Processing through Cross-Modal Association

JLR: Learning Cross-Media Joint Representation With Sparse and Semi-supervised Regularization

LGCFL: Learning Consistent Feature Representation for Cross-Modal Multimedia Retrieval

DCCA: Deep Correlation for Matching Images and Text

Corr-AE: Cross-modal Retrieval with Correspondence Autoencoder

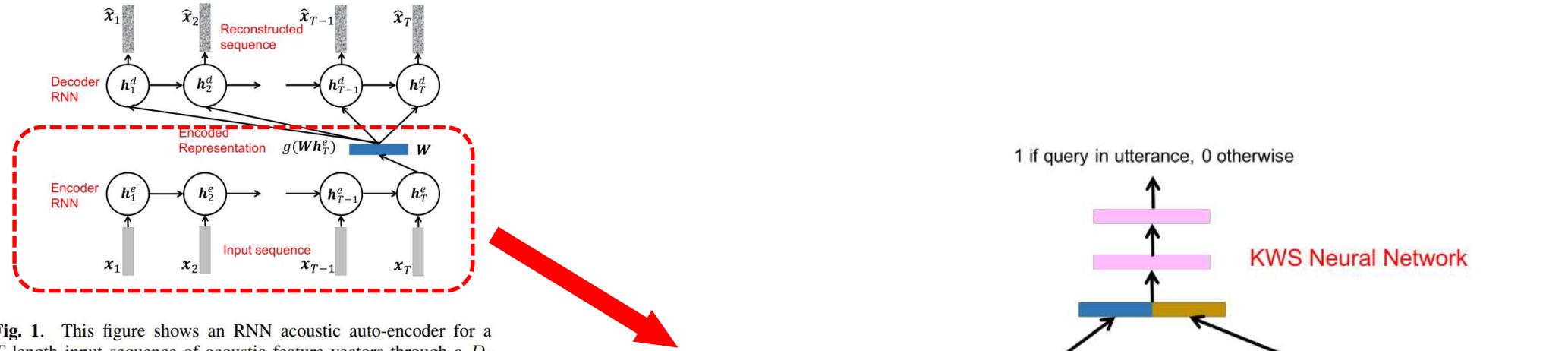
CM-GANs: Cross-modal Generative Adversarial Networks for Common Representation Learning

MMCA: Multi-Modality Cross Attention Network for Image and Sentence Matching

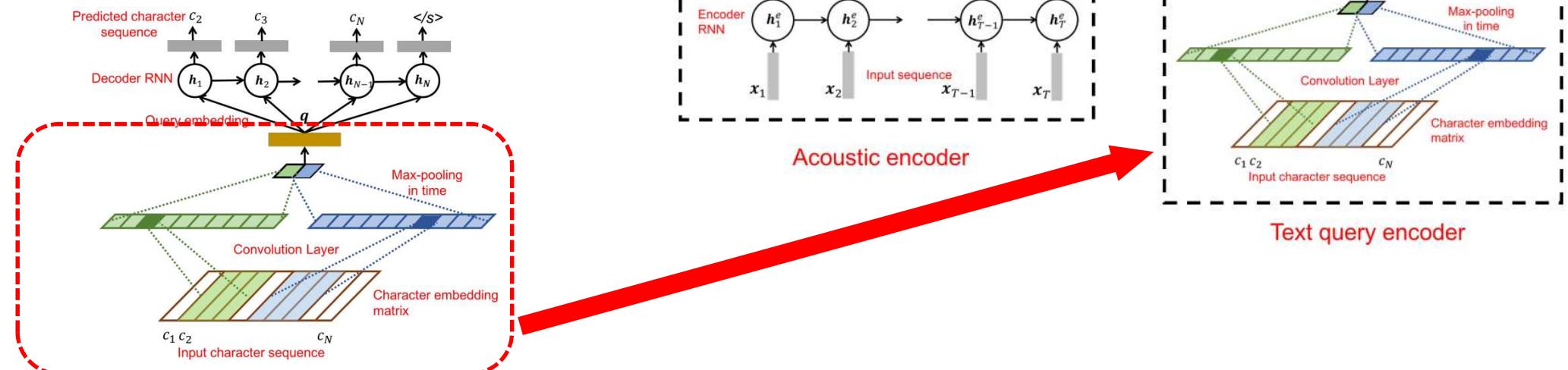
...

## Keywords Spotting

### >>> Cross Modality



**Fig. 1.** This figure shows an RNN acoustic auto-encoder for a  $T$ -length input sequence of acoustic feature vectors through a  $D$ -dimensional encoded representation  $g(W\mathbf{h}_T^e)$ , where  $g$  denotes a ReLU activation function.



**Fig. 2.** This figure shows an character CNN-RNN LM for encoding text queries. We show two convolutional masks for simplicity.

**Table 2.** This table compares the KWS accuracy of the E2W KWS and DNN-HMM hybrid ASR systems for IV and OOV queries.

| Query Type →              | IV   | OOV           |
|---------------------------|------|---------------|
| DNN-HMM (2gm word LM)     | 76.7 | 50.0 (chance) |
| DNN-HMM (4gm grapheme LM) | 70.7 | 55.5          |
| E2E ASR-free              | 55.6 | 57.7          |

Table 2 shows the classification accuracies of the DNN-HMM ASR system and the proposed E2E ASR-free KWS system. We obtain a classification accuracy of 55.6% on IV and 57.7% on OOV queries, which is significantly above chance. As expected, the IV performance is lower than that of the hybrid ASR system using 2-gm word LM. But it is interesting to note that the E2E ASR-free and hybrid system using 4-gm grapheme LM have closer accuracies, especially for OOV queries, where the E2E KWS system performs better by 2.2% absolute. This result is encouraging, since the hybrid system uses word-level transcriptions for training the acoustic model and 36 times more training time than the E2E ASR-free KWS system. We performed further analysis of the dependence of KWS performance on query length. Table 1 shows the classification accuracy as a function of number of graphemes in the query. We observe that both the ASR-based and E2E KWS systems have difficulty detecting short queries. In case of the E2E system, this is because it is difficult to derive a reliable representation for short queries due to the lack of context. A key advantage of the E2E KWS system is that it takes 36 times less time to train than the DNN-HMM system.

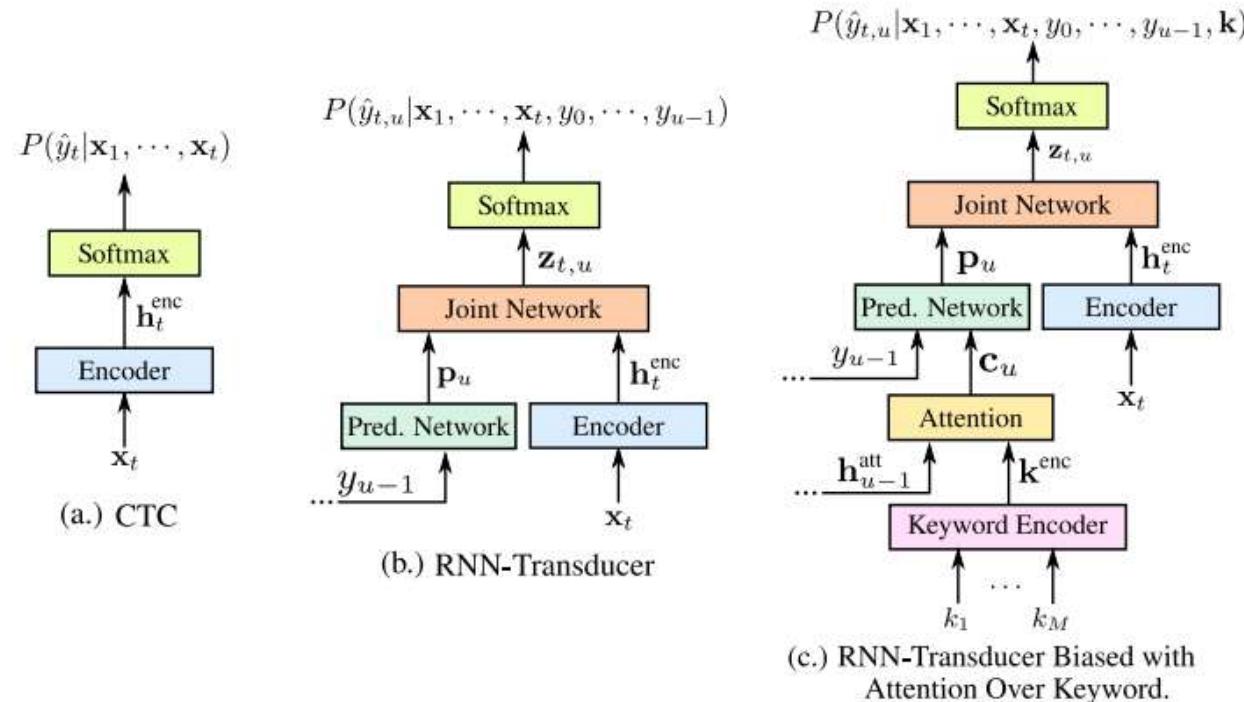
**Table 1.** This table compares the KWS accuracy of the E2W KWS and DNN-HMM hybrid ASR systems for different IV query lengths.

| Query Length →            | ≤3   | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | ≥15  |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| DNN-HMM (2gm word LM)     | 69.8 | 72.5 | 74.6 | 77.9 | 77.3 | 78.8 | 76.7 | 80.0 | 78.7 | 78.9 | 74.5 | 77.1 | 78.6 |
| DNN-HMM (4gm grapheme LM) | 70.6 | 74.7 | 71.1 | 72.8 | 71.9 | 70.1 | 66.4 | 68.4 | 67.3 | 65.2 | 65.6 | 65.4 | 65.3 |
| E2E ASR-free              | 51.8 | 56.4 | 56.5 | 55.6 | 55.3 | 55.1 | 55.7 | 52.1 | 53.5 | 58.4 | 55.8 | 56.7 | 60.0 |

## Keywords Spotting

---

### >>> Cross Modality



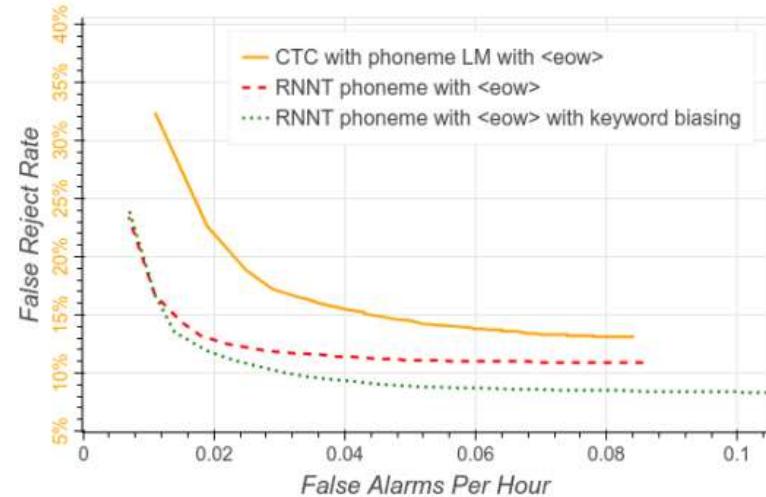
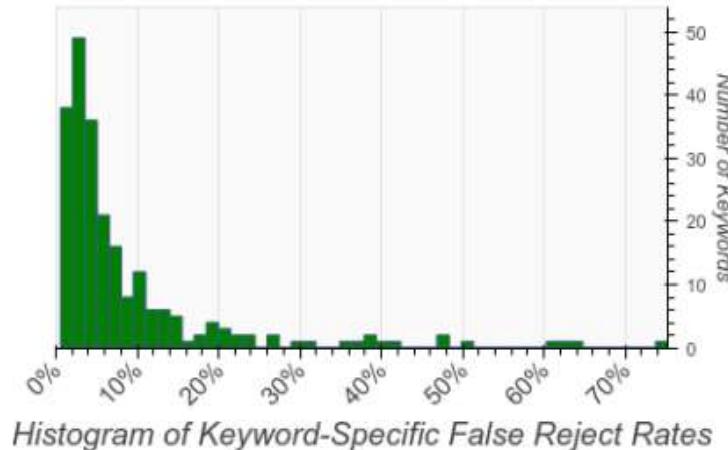
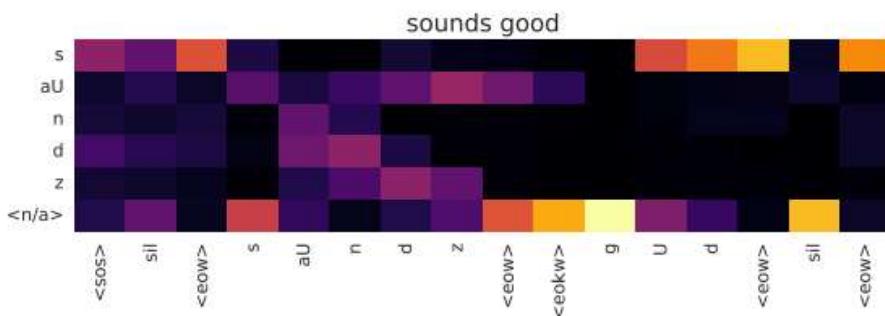
**Fig. 1:** A schematic representation of the models used in this work.

Unlike the RNN-T model, which can be trained given pairs of input and output sequences  $(\mathbf{x}, \mathbf{y})$ , in order to train the RNN-T model with keyword biasing, we need to also associate a keyword phrase,  $\mathbf{k}$ , with the training instance. We create examples where the keyword,  $\mathbf{k}$ , is present in  $\mathbf{x}$ , as well as examples where the keyword is absent in  $\mathbf{x}$  as follows: with probability  $p^{\text{kw}}$  we uniformly sample one of the words in  $\mathbf{x}$  as the keyword,  $\mathbf{k}$ , and with probability  $1 - p^{\text{kw}}$  we uniformly sample a word which is not in  $\mathbf{x}$  as the keyword,  $\mathbf{k}$ . If we select one of the words in  $\mathbf{x}$  as the target, we modify the target labels  $\mathbf{y}$  by inserting a special symbol  $\langle \text{eokw} \rangle$  after the occurrence of the keyword. For example, when training with phoneme targets, for the utterance the cat sat, (which corresponds to the phoneme sequence<sup>3</sup>  $[D \text{ V } \langle \text{eow} \rangle \text{ k } \{ \text{ t } \langle \text{eow} \rangle \text{ s } \{ \text{ t } \langle \text{eow} \rangle ]$ ), if we sampled  $\mathbf{k} = \text{cat}$  as the keyword, then we would modify the target labels as,  $\mathbf{y} = [D \text{ V } \langle \text{eow} \rangle \text{ k } \{ \text{ t } \langle \text{eow} \rangle \text{ } \langle \text{eokw} \rangle \text{ s } \{ \text{ t } \langle \text{eow} \rangle ]$ . Note that the  $\langle \text{eow} \rangle$  token marks the end of each word token (see Section 3.2). The intuition behind adding the  $\langle \text{eokw} \rangle$  at the end of the keyword phrase in the transcript, is that it might serve as a marker that the model should attend to the targets in the keyword phrase. As a final note, the training and inference algorithms for this model are similar to the standard RNN-T model.

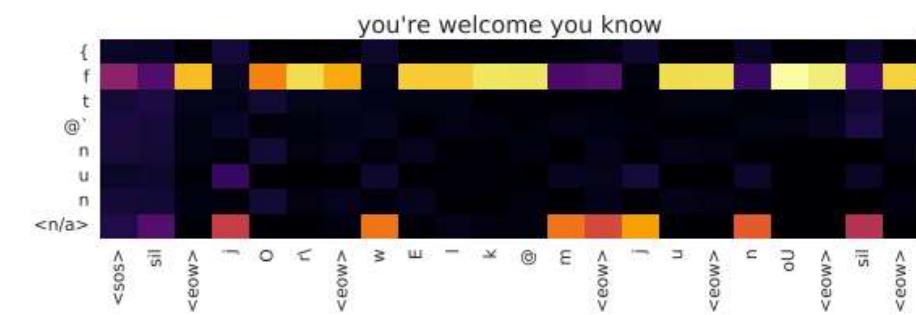
<sup>3</sup>We use X-SAMPA to denote phonemes throughout the paper.

# Keywords Spotting

## >>> Cross Modality



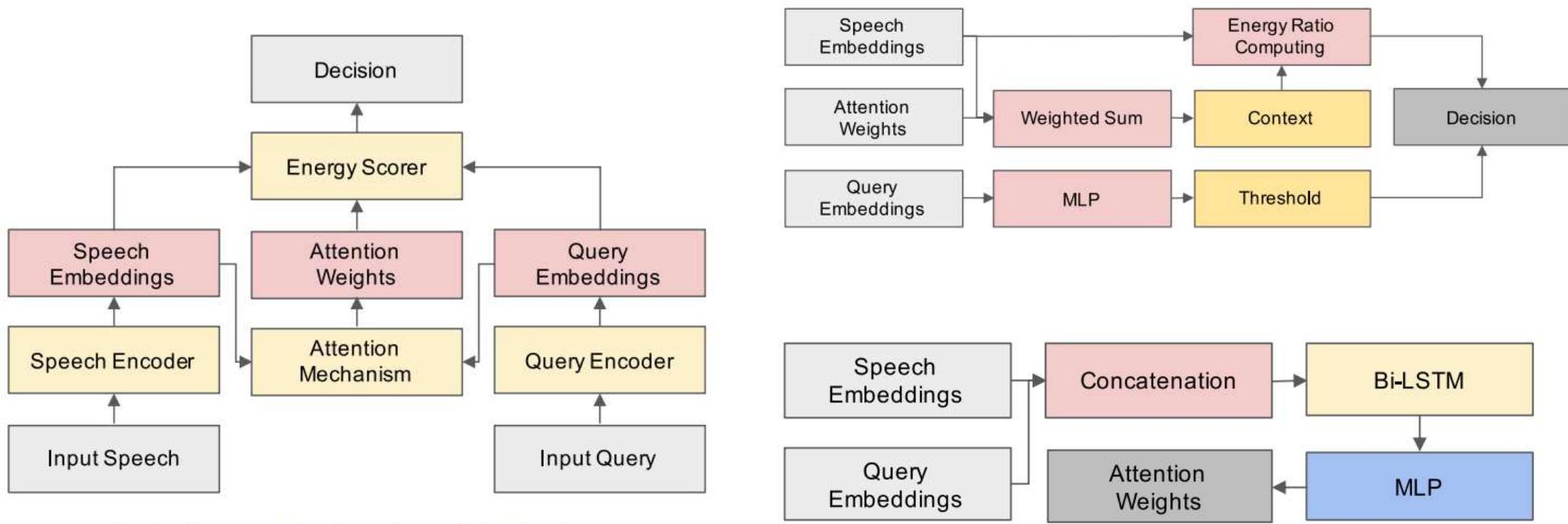
(a) Attention matrix of a positive utterance for the keyword "sounds", with the transcript "sounds good".



(b) Attention matrix of a negative utterance for the keyword "afternoon", with the transcript "you're welcome you know".

## Keywords Spotting

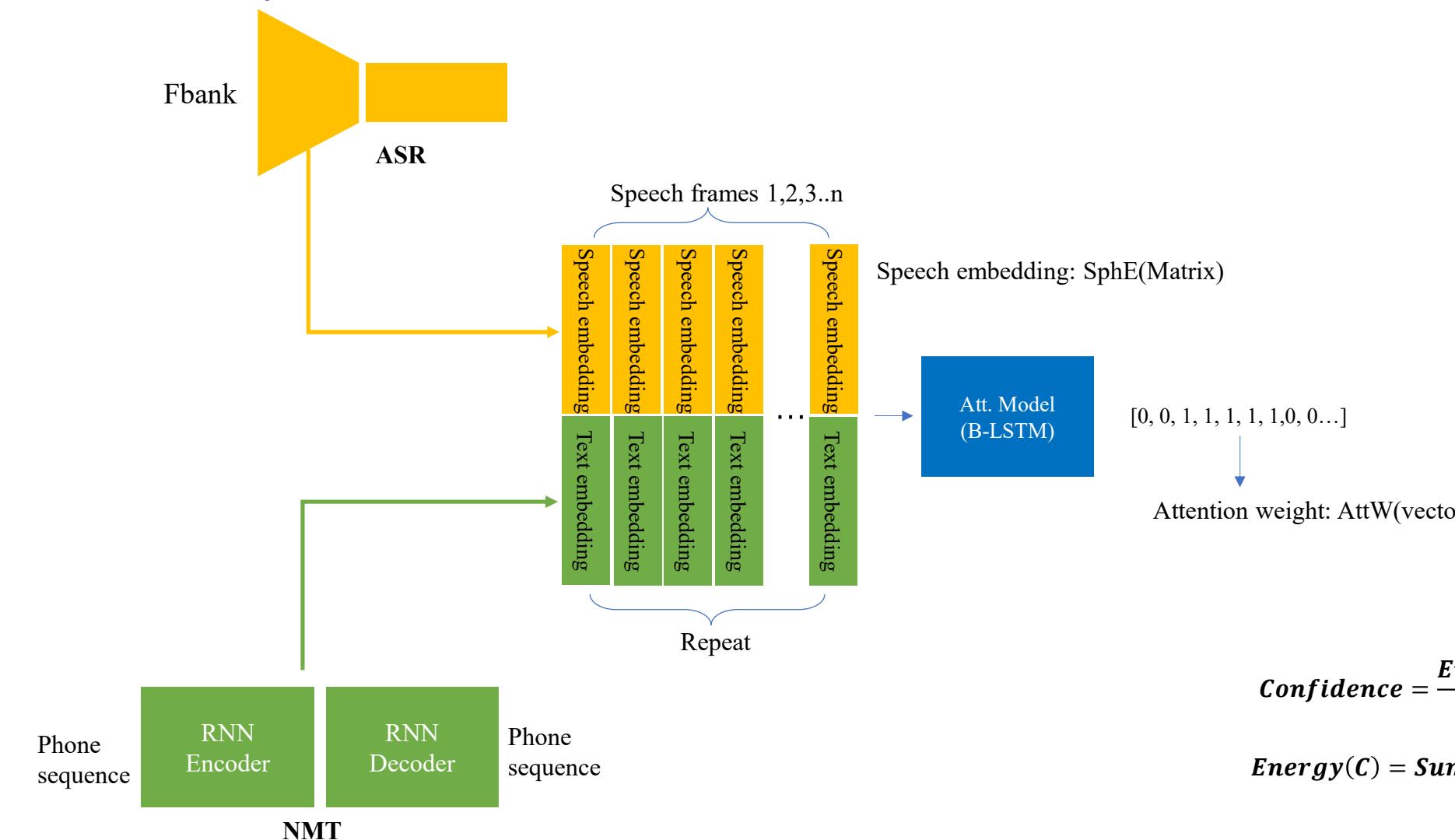
### >>> Cross Modality



**Fig. 1.** The overall structure of our E2E KWS system.

*End-to-end keyword search system based on attention mechanism and energy scorer for low resource languages THU*

## **Keywords Spotting** - **>>> Cross Modality**



$$\text{Confidence} = \frac{\text{Energy}(SphE * AttW)}{\text{Energy}(SphE)}$$

$$Energy(C) = Sum(C^T C)$$

End-to-end keyword search system based on attention mechanism and energy scorer for low resource languages THU

## Keywords Spotting

---

### >>> Cross Modality

**Table 1**

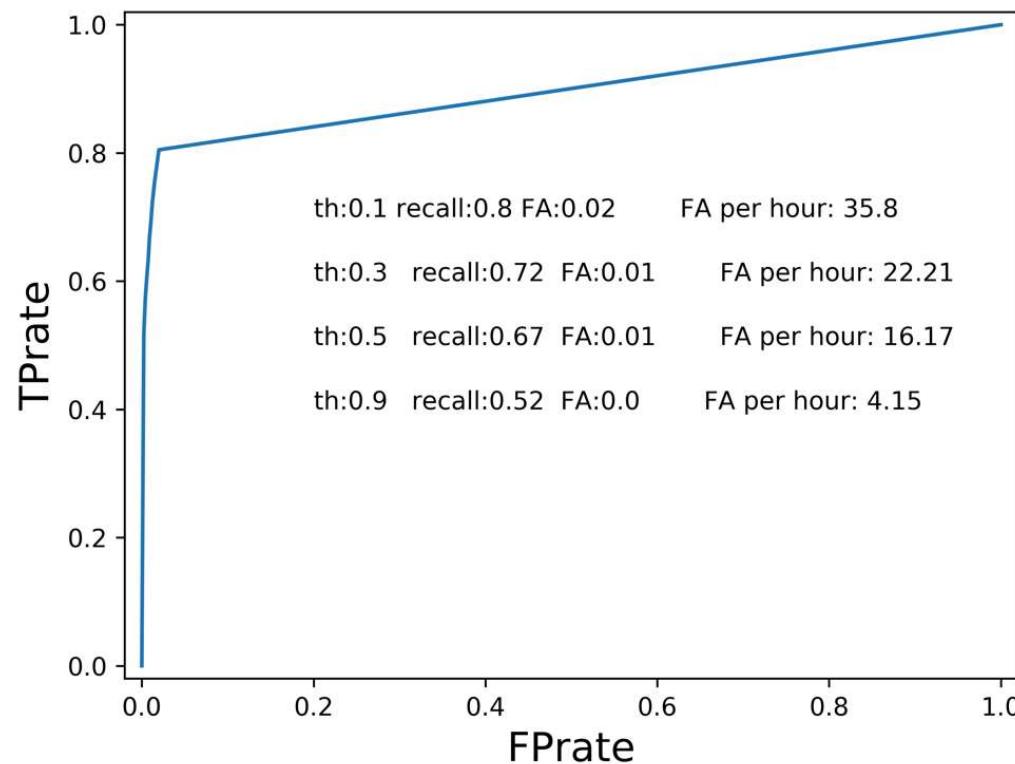
The KWS performance of ACC and AUC with different speech decoders for Assamese IV and OOV.

|     |     | CTC    | Attention Seq2Seq | Baseline |
|-----|-----|--------|-------------------|----------|
| ACC | IV  | 0.7061 | 0.7343            | 0.6135   |
|     | OOV | 0.7049 | 0.7072            | 0.6042   |
| AUC | IV  | 0.7737 | 0.7787            | 0.6384   |
|     | OOV | 0.7715 | 0.7577            | 0.6320   |

**Table 2**

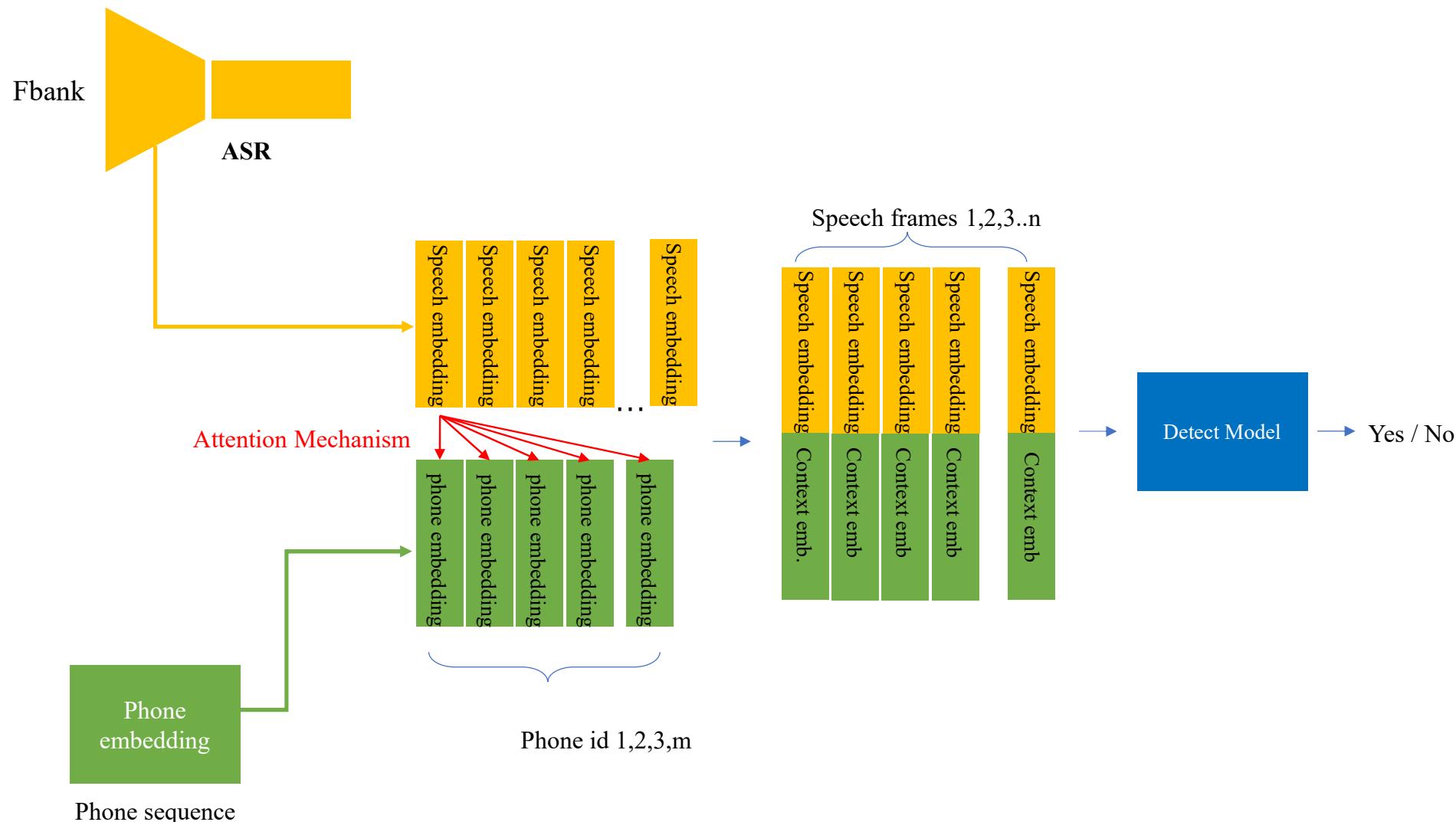
The performance of ACC and AUC with pre-trained and un-pre-trained speech encoder-decoders for Assamese IV and OOV.

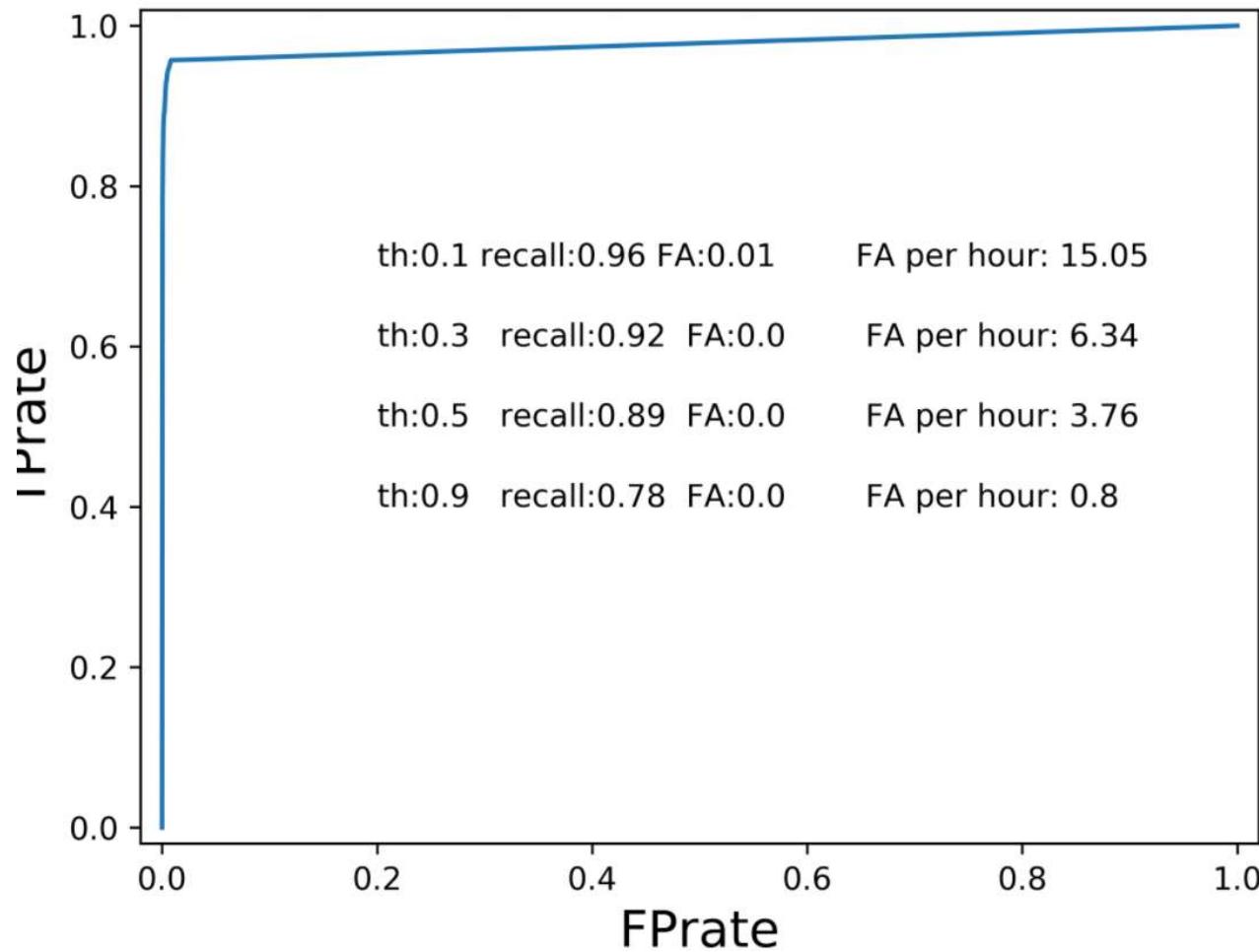
|     |     | Pre-trained | Un-pre-trained | Baseline |
|-----|-----|-------------|----------------|----------|
| ACC | IV  | 0.7343      | 0.6380         | 0.6135   |
|     | OOV | 0.7072      | 0.6318         | 0.6042   |
| AUC | IV  | 0.7787      | 0.6945         | 0.6384   |
|     | OOV | 0.7577      | 0.6930         | 0.6320   |



## Keywords Spotting

### >>> Cross Modality Attention E2E KWS





- Control FA
- Test on Overlap Speech

*Thanks*