
The RoyalFlush System Description for AP21-OLR Challenge

Ding Wang1, Shuaishuai Ye1, Xinhui Hu1, Sheng Li2

1Hithink RoyalFlush AI Research Institute, Zhejiang, China
2National Institute of Information and Communications Technology (NICT), Kyoto, Japan

1{wangding2,yeshuaishuai,huxinhui}@myhexin.com
2sheng.li@nict.jp

Abstract
This paper describes our RoyalFlush system for the AP21-OLR
challenge. The challenge this year contains four tasks: (1) con-
strained Language identification (LID), (2) unconstrained LID,
(3) constrained multilingual ASR, (4) unconstrained multilin-
gual ASR. Because the challenge of this year has two main
tasks: LID and multilingual ASR, we adopted different mod-
eling schemes for different tasks and optimized the systems
from three aspects, including the data augmentation, modeling
method, and fusion strategy. Firstly, We constructed one train-
ing set and two development sets for LID and ASR tasks respec-
tively. Secondly, we developed our systems on Kaldi, Pytorch,
ESPnet and Wenet, in which different optimization methods are
available. For LID tasks, x-vector system and end-to-end (E2E)
system were both adopted. For ASR tasks, we only used E2E
system because of its better performance and flexibility. Finally,
the greedy fusion strategy helped us choose the LID subsystems
for the final fusion system of task 1 and 2, and the rover toolkit
was used to obtain the ASR results of the final fusion of multiple
end-to-end systems for task 3 and 4.
Index Terms: LID, multilingual ASR, x-vector, end-to-end,
multi-task training

1. Data Preparation
In this AP21-OLR challenge, only the data provided by the or-
ganizer can be used in the constrained tasks (task 1 and 3), and
any data can be used for training and optimization in the uncon-
strained tasks (task 2 and 4). Moreover, the organizing commit-
tee has not designated the development set of the competition
this year, and all participating teams are encouraged to build
their own development set. Therefore, we sorted out the data
provided by the organizer and constructed different training sets
and development sets for each task, which is listed in Table 1.

1.1. Training and Development Sets

Because the total amount of data available for the LID task and
ASR task is different, we have sorted out one training set and
one development set for task 1 and task 3 respectively.

We arranged all available data in the OLR2021 train pro-
vided by the organizer and sorted out five data sets, AP21-
LID-Train, AP21-ASR-Train, AP21-LID-Dev, AP21-ASR-Dev,
AP21-LID-Task2-4Lang. The training sets of LID and ASR
both contain cross channel data, while the two development sets
do not contain cross channel data.

For task 1 and 3, after the progress set results can be sub-
mitted on November 1, we also use the progress set as the de-
velopment set for system tuning. After November 20, we use
the fusion results of three better performing subsystems on the
progress set as labels to continue to use it to evaluate our sys-
tem.

1.2. Data Augmentation

We adopted speed and volume perturbation data augmentation
methods in both x-vector systems and end-to-end systems, to
increase the amount and diversity of training set. We applied
the speed factor of 0.9, 1.0 and 1.1 to the original recordings
for speed perturbation and random volume factor to modify the
volume of original recordings. Finally, three augmented copies
of the original recording were added to the original data set to
obtain a 4-fold training set. For end-to-end systems, we also
used the data augmentation strategy of noise disturbance, one
noise augmented copies were added to the end-to-end training
set so we obtain a 5-fold training set.

2. Task 1
In the task 1, because the results of the X-vector and the End-
to-end systems are complementary, we fused their results as the
final result.

2.1. End-to-end LID

In the end-to-end (E2E) system, we adopted two training
schemes, namely transfer learning and multi-task joint training.
For transfer learning, we firstly trained a 18-layer conformer-
based [6] Joint CTC/Attention end-to-end ASR model using the
training set AP21-ASR-Train. Then, we trained the 18-layer en-
coder with an attention mechanism of the conformer as LID
model to classify the 13 languages using knowledge transfer
learning on the 18-layer encoder of the conformer-based Joint
CTC/Attention ASR model, using the training data AP21-LID-
Train [7]. The more detailed system configuration was de-
scribed in the [7]. For the multi-task joint training, our E2E
OLR/ASR model adopted a hybrid CTC/attention architecture
that consists of three components: a shared encoder, an at-
tention decoder, and a CTC module. We trained a 18-layer
conformer-based Joint OLR/ASR end-to-end model, as shown
in the figure 1. The training process is to jointly optimize the
weight-sum of the loss of the attention decoder Latt and the
CTC loss Lctc shown as:

L = αLctc + (1− α)Latt + βLolr (1)

where the hyper-parameter α represents the weight of the CTC
loss, and the β is the weight of the OLR loss.

2.2. X-vector

2.2.1. Resnet34 x-vector

We chose an Resnet34 as the x-vector system. Compared to the
traditional x-vector and the extended TDNN x-vector,ResNet
structure can learn a lot of detailed temporal information. The
deep structure was trained to classify the N languages using the



Table 1: Data sets used in our systems

Set name in our paper Source data sets [1, 2, 3, 4, 5] Used in wihch task Usage in our systems Utterances Transcripts

AP21-LID-Train OLR2021 Train task 1-2 train & enroll 300999 No
AP21-ASR-Train OLR2021 Train task 1-4 train 99315 Yes
AP21-LID-Dev OLR2021 Train task 1-2 dev 6500 No
AP21-ASR-Dev OLR2021 Train task 3-4 dev 6500 Yes

AP21-LID-Task2-4Lang OLR2021 Train task 2 enroll 7762 No
Task1 3 4 Progress OLR2021 Progress task 1 dev 16431 No

additive angular margin (AAM) loss function. During the test
stage, the embedding features of x-vector were extracted from
the affine component of the penultimate layer.

In addition, the input feature of our Resnet34 x-vector sys-
tem is Bottleneck feature [8] of the end-to-end system men-
tioned above, We use the encoder output of the end-to-end net-
work as the bottleneck feature. Therefore, we train all BNF
data as valid frames without using VAD module to filter silent
frames.

2.2.2. Back-end

Logistic regression (LR) [9] is a classical supervised
classification-regression algorithm. With the help of sigmoid
function, the training samples are compressed between [0, 1]
which represents a probability of significance of each sample in
the discrimination space. Therefore, in order to classify differ-
ent language category, we used the LRs in our x-vector system
which were trained using embedding feature extracted from re-
spective enrollment set.

2.3. Greedy Fusion

The fusion strategy of the greedy fusion [10] was adopted in our
systems. The greedy fusion strategy is to weighted average the
output of all subsystems to obtain the final result. According
to our preliminary experiments, all subsystems were set to the
same fusion weight, and the sum of fusion weight of all subsys-
tems was 1.

3. Task 2

In the task 2, we did not use any speech or text data due to our
own conditions. So we regarded this task as a low resources
task.

Firstly, we built 3 Resnet34 x-vector systems using the BNF
features output by 3 different end-to-end systems (conformer-
wenet, conformer-espnet2, conformer-wenet-unified). The tar-
get language of our model training is also 13 languages, as same
as task 1. Secondly, in the back-end classification stage, we take
the two data sets AP21-LID-Train and AP21-LID-Task2-4lang,
which contain 17 languages together as the enrollment set, ex-
tract the x-vector embedding by the model, and use LR to train
a classifier for 17 languages. Finally, we also adopted greedy
fusion strategy to obtain the final result.

4. Task 3 & Task 4

Similar to task 2, we did not collect data for task 4 and train an
ASR system under an unrestricted data set, so our systems of
task 3 and task 4 are the same.

4.1. End-to-end ASR

For multilingual ASR, we also chose two methods, namely the
E2E multilingual ASR [7] and the multi-task training of ASR
and LID. As for E2E multilingual ASR, we adopt the same
method with [7]. For the multi-task training of ASR and LID,
we used the identical network architecture to that mentioned in
2.1. Our multi-task training system of ASR and LID is shown
in Figure 1.

Input Embedding Input Embedding

Masked

Multi-Head

Self-Attention

Add & Norm

Multi-Head

Self-Attention

Add & Norm

Feed Forword

Add & Norm

Linear

Softmax

~
K V Q

K V Q

+ +

×M

N×

Positional

Embedding

Feed Forword

Multi-Head

Self-Attention

Add & Norm

Feed Forword

Add & Norm

K QV

Add & Norm

Convolution

Add & Norm

1/2 ×

Linear & Swish

Stats pooling layer

λ3

~Positional

Embedding

Linear

OLR_loss

CTC_loss

Attention_loss

Total_loss λ1

λ2

×L

Figure 1: Structure of our multi-task training of ASR and LID
system.

4.2. Rover Fusion

The fusion strategy used in ASR systems is Rover [11], a sys-
tem developed at NIST to produce a composite ASR system
output when the outputs of multiple ASR systems are available.
The Rover system implements a ”voting” or rescoring process
to reconcile differences in ASR system outputs. The outputs of
multiple ASR systems are combined into a single, minimal cost
word transition network via iterative applications of dynamic
programming alignments. The resulting network is searched by
an automatic ”voting” process that selects an output sequence
with the lowest score.



Table 2: LID results for systems with different settings on dev-set and progress-set. ‘CE’ represents cross entropy loss and ‘KL’
represents Kullback-Leibler divergence loss.

System Training schemes OLR Loss Platform Dev-sets Progress-sets*

Cavg EER% Cavg EER%

Baseline x-vector - AM Pytorch - - 0.0826 9.038

Our fusion system - CE & KL Wenet & Pytorch 0.0033 0.3692 0.0060 0.767

Resnet x-vector - AAM Pytorch 0.0375 3.646 0.0286 2.629
E2E-swish Transfer CE Wenet 0.0019 0.2154 0.0181 1.868
E2E-swish Transfer KL Wenet 0.0018 0.2000 0.0189 1.984

E2E-noswish Transfer KL Wenet 0.0020 0.2154 0.0194 2.392
E2E-swish Multi-task joint KL Wenet 0.0481 5.0150 0.0255 2.690

E2E-noswish Multi-task joint KL Wenet 0.0428 4.4620 0.0226 2.234
* The performance of each system in the following table on the progress set is that after the x-vector system and end-to-end

system we trained are submitted on the progress set, we got the label of the progress set according to the subsystem output
voting strategy.

Table 3: ASR results for systems with different settings on dev-set.

System Unified training Platform CER% of Dev-set
Total zh-cn Minnan Shanghai Sichuan ct-cn id-id ja-jp ko-kr ru-ru vi-vn Kazak Tibet Uyghu

Baseline Transformer* No Pytorch 39.4 116.8 69.3 35.9 34.5 47.0 9.2 67.3 34.2 35.5 31.1 35.1 52.7 21.0

Our fusion system - Wenet & 11.4 11.2 33.9 28.3 21.8 17.9 10.4 23.8 13.3 9.1 9.0 13.1 6.0 6.5Espnet2

E2E-conformer No Wenet 12.7 11.9 35.0 29.0 22.9 18.9 11.4 25.1 14.1 9.8 9.5 13.8 10.9 7.0
E2E-conformer No Espnet2 12.3 13.1 36.1 29.6 23.0 18.4 10.4 24.8 12.8 9.1 9.9 14.3 6.0 8.7
E2E-conformer Yes Wenet 12.4 11.9 35.5 29.1 22.8 18.1 11.3 24.3 13.7 9.6 9.5 13.8 9.8 6.9

E2E-conformer-swish Yes Wenet 12.3 11.4 35.2 29.4 22.4 17.8 11.0 24.0 13.3 9.5 9.3 13.9 9.4 6.9
* The performance of the baseline system on the development set is copied from [5].

5. Experimental Settings and Results
5.1. Experimental Settings

In this challenge, we built more than 20 subsystems for all
4 tasks. Although 3 platforms (Kaldi, Wenet, EspNet2) were
used to build subsystems, the feature engineering and the back-
end processing were all completed on the Kaldi [12] plat-
form. For feature engineering, two basic acoustic features:
80-dimensional FBANK and 80-dimensional PLP concatenated
with 3-dimensional pitch feature respectively were used. Also,
a 256-dimensional BNF was used as another acoustic feature
for x-vector model training.

For x-vector systems in task 1 and 2, the structure of our
system was the same as what it’s in the recipes of olr2021-
baseline (resnet-xvector.py). The differences of the x-vector
system are our adjustment of hyper-parameters, and the num-
ber of epochs of all x-vector systems is set to 41 with a batch
size of 64. Linear discriminative analysis (LDA) trained on the
enrollment set was employed to promote language-related in-
formation. The dimension of the LDA projection space was set
to 100. After the LDA projection and centering, the logistic re-
gression (LR) trained on the enroll set was used to compute the
score of a trial on a particular language. Finally, according to
the results of score-level greedy fusion on the development set,
the final 3 subsystems were chosen for the task 2 fusion.

For end-to-end systems in task 1 and 3, the conformer-
based end-to-end model was composed of a 18-layer encoder
with 2048 units, a 6-layer decoder with 2048 units and 4-
head attention with 256 dimensions, which was trained on the
premise of taking the character as the modeling unit. The trans-
fer learning LID model was structured using a 18-layer encoder

with 2048 units and 4-head attention with 256 dimension fol-
lowed by 1-layer stats pooling layer and 3-layer linear layers,
which was initialized respectively using the encoder and atten-
tion of the conformer ASR model to classify 13 languages. The
ASR part of multi-task model employed the same network con-
figuration with the E2E ASR, and the encoder of ASR was fol-
lowed by 1-layer stats pooling layer and 3-layer linear layers as
a classifier of LID part.

The results and configurations of subsystems used for fu-
sion were presented in the Table 2 and Table 3.

5.2. Experimental Results

For task 1, because the results on the progress set are comple-
mentary, we fused 1 BNF x-vector system with 5 end-to-end
based systems. For task 2, all 3 subsystems we used to fuse
was BNF x-vector systems, the BNF feature extraction end-to-
end systems are the wenet-conformer, espnet2-conformer and
wenet-conformer-unified-swish systems, which is the first, sec-
ond, and fourth system mentioned in Table 3. For task 3 and
4, two sets of non multi-task joint training end-to-end systems
and two sets of multi-task joint end-to-end systems are fused to
obtain the submitted results.

6. Conclusions
In this paper, we illustrated the RoyalFlush system for the
AP21-OLR challenge. Many methods, including our previously
proposed methods, were investigated in four tasks. Among our
experimented systems, the best single system was the end-to-
end system. Further, the fusion of subsystems improved the per-
formance and robustness of the submitted systems for all four



tasks. Finally, the contribution rank of our submitted systems
will be: 1) End-to-end based modeling for the LID and ASR
systems, and 2) x-vector base LID system with bottleneck fea-
ture, and 3) the optimization of different subsystems.

7. References
[1] Z. Tang, D. Wang, Y. Chen, and Q. Chen, “Ap17-olr challenge:

Data, plan, and baseline,” in 2017 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference
(APSIPA ASC), 2017.

[2] Z. Tang, D. Wang, and Q. Chen, “Ap18-olr challenge: Three tasks
and their baselines,” in 2018 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC), 2018.

[3] Z. Tang, D. Wang, and L. Song, “Ap19-olr challenge: Three tasks
and their baselines,” in 2019 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA
ASC), 2019.

[4] Z. Li, M. Zhao, Q. Hong, L. Li, and C. Yang, “Ap20-olr challenge:
Three tasks and their baselines,” 2020.

[5] B. Wang, W. Hu, J. Li, Y. Zhi, and C. Yang, “Olr 2021 challenge:
Datasets, rules and baselines,” IEEE, 2021.

[6] N. S. Vaswani, Ashish and et al., “Attention is all you need,” in In
Advances in neural information processing systems, 2019.

[7] D. Wang, S. Ye, X. Hu, S. Li, and X. Xu, “An End-to-End Di-
alect Identification System with Transfer Learning from a Mul-
tilingual Automatic Speech Recognition Model,” in Proc. Inter-
speech 2021, 2021.

[8] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient process-
ing of deep neural networks: A tutorial and survey,” Proceedings
of the IEEE, vol. 105, no. 12, 2017.

[9] D. Kleinbaum and M. Klein, Logistic Regression. New York:
Springer, 2010.

[10] K. Kennedy, “Fast greedy weighted fusion,” International Journal
of Parallel Programming, 2001.

[11] J. G. Fiscus, “A post-processing system to yield reduced word er-
ror rates: Recognizer output voting error reduction (rover),” in
1997 IEEE Workshop on Automatic Speech Recognition and Un-
derstanding Proceedings, 2002.

[12] G. Boulianne, “The kaldi speech recognition toolkit,” IEEE 2011
workshop on automatic speech recognition and understanding.
No. CONF. IEEE Signal Processing Society, 2011.


	 Data Preparation
	 Training and Development Sets
	 Data Augmentation

	 Task 1
	 End-to-end LID
	 X-vector
	 Resnet34 x-vector
	 Back-end

	 Greedy Fusion

	 Task 2
	 Task 3 & Task 4
	 End-to-end ASR
	 Rover Fusion

	 Experimental Settings and Results
	 Experimental Settings
	 Experimental Results

	 Conclusions
	 References

