
On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems

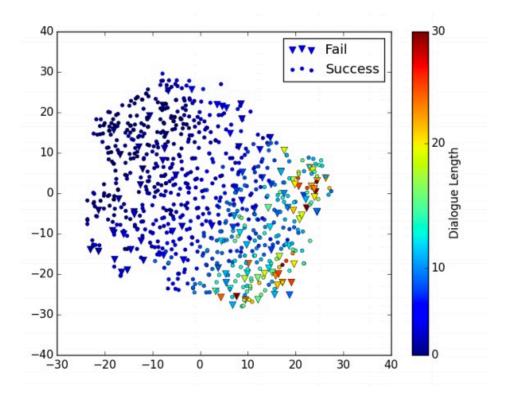
introduction

- 1. an on-line learning framework whereby the dialogue policy is jointly trained alongside the reward model via active learning with a Gaussian process model.
- 2. This Gaussian process operates on a continuous space dialogue representation generated in an unsupervised fashion using a recurrent neural network encoder-decoder.
- 3.reduce data annotation costs and mitigate noisy user feedback in dialogue policy learning.

Three main parts of propose framework

- 1. A dialogue embedding function
- 2. An active reward model of user feedback
- 3. A dialogue policy
- 4. the key contribution here is to learn the noise robust reward model and the dialogue policy simultaneously on-line, using the user as a 'supervisor'.

Unsupervised Dialogue Embeddings

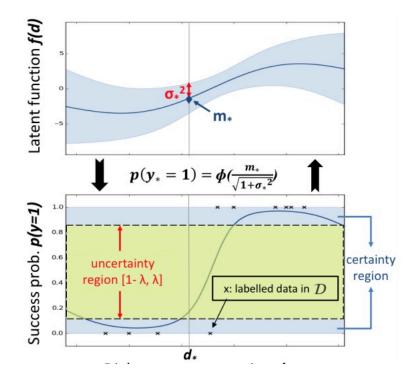

$$\overrightarrow{\mathbf{h_t}} = LSTM(\mathbf{f_t}, \overrightarrow{\mathbf{h}}_{t-1}) \qquad \mathbf{d} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{h_t}$$

$$\overleftarrow{\mathbf{h_t}} = LSTM(\mathbf{f_t}, \overleftarrow{\mathbf{h}}_{t+1})$$

$$MSE = rac{1}{N} {\sum_{i=1}^N \sum_{t=1}^T ||\mathbf{f}_t - \mathbf{f}_t'||^2}$$

user intention determined

by the semantic decoder, the distribution over each concept of interest defined in the ontology, a one-hot encoding of the system's reply action, and the turn number normalised by the maximum number of turns (here 30)



Active Reward Learning

$$p(y = 1|\mathbf{d}, \mathcal{D}) = \phi(f(\mathbf{d}|\mathcal{D})).$$

$$k(\mathbf{d}, \mathbf{d}') = p^2 \exp(-\frac{||\mathbf{d} - \mathbf{d}'||^2}{2l^2}) + \sigma_n^2$$

a latent function $f(\mathbf{d}|\mathcal{D})$: $\mathcal{R}^{dim(\mathbf{d})}
ightarrow \mathcal{R}$

results

Dialogues	Reward Model	Subjective (%)
400-500	Obj=Subj	85.0 ± 2.1
	off-line RNN	89.0 ± 1.8
	Subj	90.7 ± 1.7
	on-line GP	91.7 ± 1.6
500-850	Subj	87.1 ± 1.0
	on-line GP	90.9 ± 0.9 *

^{*} p < 0.05

Subj	Prec.	Recall	F-measure	Number
Fail	1.00	0.52	0.68	204
Suc.	0.95	1.00	0.97	1892
Total	0.96	0.95	0.95	2096

Thank you!

Presented by Jiyuan Zhang