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Abstract—This paper proposes a speaker recognition (SRE)
task with trivial speech events, such as cough and laugh. These
trivial events are ubiquitous in conversations and less subjected
to intentional change, therefore offering valuable particularities
to discover the genuine speaker from disguised speech. However,
trivial events are often short and idiocratic in spectral patterns,
making SRE extremely difficult. Fortunately, we found a very
powerful deep feature learning structure that can extract highly
speaker-sensitive features. By employing this tool, we studied the
SRE performance on three types of trivial events: cough, laugh
and “Wei” (a short Chinese “Hello”). The results show that there
is rich speaker information within these trivial events, even for
cough that is intuitively less speaker distinguishable. With the
deep feature approach, the EER can reach 10%-14% with the
three trivial events, despite their extremely short durations (0.2-
1.0 seconds).

I. INTRODUCTION

Automatic speaker recognition (SRE) is an important bio-
metric authentication technology. After several decades of
development, SER has gained significant progress and the
performance has been good enough for some constrained ap-
plications, e.g., with sufficient enrollment and test speech and
the quality of the speech signals is reasonable [1], [2]. In spite
of the prominent success, however, almost all the existing SRE
approaches work on long-duration linguistic speech segments,
e.g., segments with clear and long linguistic content such as
“Hello, Google” [3]. In this paper, we are interested in some
“trivial events” in speech signals, such as cough, laugh and
“Wei” (a short “hello” in Chinese). These events are ubiquitous
in conversations and often possess distinct properties, so it
would be highly interesting to investigate how much speaker
information is loaded in each of them. Moreover, SRE on
trivial events may provide a powerful tool to attack speech
disguising, as people who intend to disguise a personal identity
are not easy to change her/his behaviors on these trivial events.

Very little has been done on these trivial events in SRE.
This is not surprising: recognition on regular speech has been
notoriously difficult, so it would be much harder to work with
trivial events that are often short and may contain only non-
linguistic content. Cough, for example, is often as short as
0.2 seconds, and the pronunciation is significantly different
from regular speech: the airflow rushes out of the lung quickly
and strongly vibrates the vocal cord. It is not easy to predict
how much speaker information is involved in such a short
and untypical signal, and it is even not easy to tell from our
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experience that if a speaker can be identified from a cough
if we are not familiar with the person. Moreover, the training
data for the trivial events are often very limited: although they
are ubiquitous in conversations, the data volume takes only a
very small proportion of the entire speech. We have not found
any large-scale database that focuses on trivial events.

In this paper, we tackle the trivial event SRE problem
by the deep speaker feature approach proposed recently by
our group [4]. This approach designs a deep neural network
(DNN) to learn frame-level speaker features from vast raw
data, where the input of the model is a frame plus a short
context, and the target involves all the speakers in the training
database. The goal of the learning is to discover a speaker
feature extractor (by the DNN hierarchy) that can extract
speaker-sensitive features from a window of speech frames.
Li et al. [4] reported very promising results and found that a
good recognition accuracy can be obtained with even a very
short speech segment. This feature learning approach therefore
provides a powerful tool to discover the speaker information
load of a small speech segment and retrieve it if it exists. We
will use this tool to study the trivial events and try to answer
the following three questions:

• Does a particular trivial event involve speaker informa-
tion?

• Can the speaker information, if exists in a trivial event,
be extracted from the event speech?

• Can the deep feature model trained with a regular speech
database be migrated to recognize trivial event segments?

Our focus is put on three types of trivial events: cough,
laugh and “Wei”. We choose these types because they are
among the most frequent ones in telephone conversations and
are highly representative. First of all, cough is mostly related to
vocal folder and involves little modulation from vocal track, so
the spectrum contains no formants; laugh is also highly vocal-
folder related, but the vocal tract may modulate the signal
to some extent with the possible existed spectrum formant;
“Wei” is mostly a regular speech segment, with a clear formant
structure. Figure 1 displays the spectra of cough, laugh and
“Wei” pronounced by the same speaker. It can be seen clearly
that formant patterns exist in “Wei” but not clear in laugh,
and totally absent in cough. From another perspective, cough
is extremely short (less than 0.3 seconds), “Wei” is often very
short (e.g., about 0.4 seconds), and laugh possesses a large
variation in length, both intra-speaker and inter-speaker (e.g.,
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from 0.3 to 1.0 seconds). Finally, the speaker information loads
are intuitively different among these three types of events: it
seems that “Wei” involves the most rich speaker information,
as people can recognize who is speaking by a single “Wei”
when picking up a phone. Laugh is the second and cough
seems the mostly vague. In summary, investigation on the three
types of events may provide a reasonable picture of the trivial
event SRE.
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Fig. 1. Spectra of (a) Cough (b) Laugh (c) “Wei” spoken by the same person.

The organization of this paper is as follows: we firstly de-
scribe the deep feature learning approach in brief in Section II,
and then present the trivial event speech database we collected
for this study in Section III. The experiments will be presented
in Section IV, followed by some conclusions and discussions
in Section V.

II. DEEP FEATURE LEARNING

Most existing successful SRE approaches are model-based.
For example, the famous Gaussian mixture model-universal
background model (GMM-UBM) framework [5] and the sub-
sequent subspace models, including the joint factor analysis
approach [6] and the i-vector model [7]. They are generative
models and heavily utilize unsupervised learning. Improve-
ments have been achieved by either discriminative compen-
sation (e.g., the SVM model [8] or PLDA [9]) or subspace
modeling [10], [11]. Almost all these methods are based on
raw acoustic features, e.g., the popular Mel frequency cepstral
coefficients (MFCC) feature.

An advantage of model-based approaches is that they can
discover the group-based behavior of speech signals of dif-
ferent speakers, and hence make appropriate decisions in the
sense of maximum likelihood. However, the heavy reliance on
statically models largely impedes the passion of researchers
in discovering the inherent and essential mechanism that
characterizes the traits of a speaker. Without knowing this
essence, existing methods have to rely on a long speech
segment to identify a speaker, by observing the ‘distributional
patterns’ of the speech frames within the segment.

Using the model-based approach to discriminate trivial
event speech segments would be difficult, due to the limit-
ed trivial event data for both training, enrollment and test.
The only possible solution is to extract as much speaker

information as possible from the short and untypical trivial
event speech, and use a model as simple as possible to make
the discrimination. This is the so called ‘feature-based’ ap-
proach. Unfortunately, traditional feature-based methods rely
on human knowledge, which have been demonstrated to be
ineffective even for regular speech, not to say the trivial event
speech for which our knowledge is far from rich.

Fortunately, our recent research shows that it is possible
to learn speaker sensitive features from raw speech signals by
deep neural networks (DNN) [4], inspired by the seminar work
of Ehsan [3]. We found a simple DNN model that can learn
speaker features very well, and a good SRE performance can
be obtained with a very small speech segment. This success in
fact demonstrated that the speaker trait is largely a short-term
spectral property, rather than a long-term distribution pattern. It
also offers the possibility to discover the essential character of
a speaker with very small trivial speech segments, for example,
a cough or laugh.

The DNN structure we designed involves a few convo-
lutional layers and several time-delayed layers: the former
extracts local discriminative patterns, while the latter allows
a long temporal context. This is referred as a CT-DNN model.
Figure 2 illustrates the CT-DNN structure used in this work.

More specifically, the CT-DNN structure consists of a con-
volutional (CN) component and a time-delay (TD) component,
connected by a bottleneck layer consisting of 512 hidden units.
The convolutional component involves two CN layers, each
followed by a max pooling. The TD component involves two
TD layers, each followed by a P-norm layer. The settings for
the two components, including the patch size, the number of
feature maps, the time-delay window, the group size of the
P-norm, have been shown in Figure 2. A simple calculation
shows that with these settings, the size of the effective context
window is 20 frames. The output of the P-norm layer is
projected to a feature layer consisting of 400 units, which
is connected to the output layer whose units correspond to the
speakers in the training data.

This CT-DNN model can be trained easily by the natural
stochastic gradient descent (NSGD) [12] algorithm. Once it
has been trained, the speaker feature can be read from the
feature layer, i.e., the last hidden layer of the model. As
in [3], the utterance-level representation, called a ‘d-vector’,
is derived by simply averaging the speaker features of all the
frames within the utterance.

During test, the d-vectors of the enrollment and test utter-
ances are produced respectively. The cosine distance between
these two vectors is then used as the decision score for the SRE
task. Similar to the i-vector system, some simple normalization
methods can be employed to enhance the SRE performance,
such as linear discriminant analysis (LDA) and probabilistic
LDA (PLDA).

When applying the above deep feature learning approach to
trivial event SRE, a particular problem is that the training data
is highly sparse. It would be difficult to collect a large amount
of trivial event speech segments, particularly cough and laugh.
In this study, we simply employ a model that was trained
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Fig. 2. The CT-DNN structure used for deep speaker feature learning.

with a large regular speech database. Our assumption is that
the training data, although not aiming for trivial events, still
involve some valuable information for them; particularly, some
trivial event speech may be represented by regular phones, e.g.,
“Wei”. This setting will also test the generalization capability
of the deep feature learning model, and examine whether the
speaker characterization produced from the trivial event speech
is the same as that from the regular speech.

III. DATABASE CONSTRUCTION

Although the model can be trained with a regular speech
database, the test data has to be specifically prepared. Since
there is not any public database suitable for our study, we
decided to construct a small trivial event speech database for
the test, and release the data for public usage. This database is
denoted by ‘CSLT-COUGH100’, and can be download online1.
Table I presents the data profile in details.

TABLE I
DATA PROFILE OF CSLT-COUGH100

Spks Total Utts Utts/Spk Avg. dur
Cough 104 890 8.6 0.27s
Laugh 104 904 8.7 0.33s
“Wei” 104 848 8.2 0.37s

To collect the data, we designed a simple Android applica-
tion, which instructs users to click a button to record cough,
laugh and “Wei”. The recording involved three sessions, each
for one type of event. In each session, the speaker was instruct-
ed to pronounce the requested event (cough, laugh, “Wei”)
multiple times (not less than 8 times), with any variation
they preferred. The recordings were then segmented into short
segments by hand, each containing only a single event. The
sampling rate of the recording is 16k Hz and the precision of
the samples is 16 bits. The recording is mostly in the office
environment, but some of them are collected on the street. The
age of the participants ranges from 20 to 60, although most
of them are between 20-30.

IV. EXPERIMENTS

This section reports our experimental results. We first de-
scribe the data and settings, and then report the SRE results

1http://data.cslt.org

in terms of the equal error rate (EER). Some analysis for the
discriminative power of the deep features are also presented.

A. Data

The Fisher database was used as the training set, which is
recorded by telephone and the sampling rate is 8k Hz. The
CSLT-COUGH100 was used as the test set. As the origin
data of CSLT-COUGH100 is in 16k Hz, we down-sampled the
signals to 8k Hz to match the Fisher database. More details
of the two datasets are as follows.

• Training set: It consists of 2, 500 male and 2, 500 female
speakers, with 95, 167 utterances randomly selected from
the Fisher database, and each speaker has about 120
seconds of speech segments. This data set was used to
train the UBM, the T matrix, and the LDA/PLDA models
of the i-vector system, as well as the CT-DNN model of
the d-vector system.

• Test set: The CLST-COUGH100 database, consisting of
104 speakers. The database contains three types of trivial
events (cough, laugh and “Wei” ), and each type of
event involves 5-10 segments. Details have been shown
in Table I.

B. Model settings

For the purpose of comparison, an i-vector system was
constructed as the baseline system. The raw features of this
system involve 19-dimensional MFCCs plus the log energy.
This raw features were augmented by the first and second
order derivatives, resulting in feature vectors of 60 dimensions.
The UBM was composed of 2, 048 Gaussian components,
and the dimensionality of the i-vector space was 400. The
dimensionality of the LDA projection space was set to 150.
When using PLDA as the scoring metric, the i-vectors were
length normalized. The system was trained using the Kaldi
SRE08 recipe [13].

The d-vector system uses the CT-DNN architecture shown
in Figure 2. The input features were 40-dimensional Fbanks. A
symmetric 4-frame window was used to splice the neighboring
frames, resulting in 9 frames in total. The number of output
units was 5, 000, corresponding to the number of speakers
in the training data. The frame-level speaker features were
extracted from the last hidden layer (the feature layer in
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Figure 2), and the utterance-level d-vectors were derived
by averaging the frame-level speaker features. The scoring
methods used for the i-vector system were also used for the d-
vector system during the test, including cosine distance, LDA
and PLDA.

C. Main results

The EER results of the i-vector system and the d-vector
system are reported in Table II. It can be observed that with
the best i-vector baseline (cosine scoring), the performance
on “Wei” (12.72%) is reasonably good considering the short
duration of the test utterance. On cough and laugh, the
performance is significantly reduced (19.96% and 23.03%
respectively). These results are expected, as the model are not
intentionally trained to cover these two kinds of trivial events,
and the content of these two events are largely non-linguistic,
so likely involve less speaker information.

TABLE II
EER(%) RESULTS WITH THE I-VECTOR AND D-VECTOR SYSTEMS.

EER%
Systems Metric Cough Laugh “Wei”
i-vector Cosine 19.96 23.03 12.72

LDA 23.55 24.24 12.90
PLDA 23.33 24.30 13.77

d-vector Cosine 11.19 13.62 10.66
LDA 12.37 13.41 10.75
PLDA 10.99 13.76 10.06

The d-vector system is significantly better than the i-vector
system, demonstrating that the feature-based approach is more
powerful. The best d-vector system is the one with the PLDA
scoring, and the EERs with this system can reach 10.99%
,13.76% and 10.06% for cough, laugh and “Wei”, respectively.
The lower EER for “Wei” compared to the i-vector system is
something expected, as we have demonstrated in [4] that the
d-vector system is stronger than the i-vector system on small
speech segments such as “Wei”. The good performance with
cough and laugh, however, is a bit surprising: both the two
events do not contain linguistic content, but the performance
is not significantly worse than the linguistic event “Wei”.
This seems that non-linguistic events still involve rich speaker
information, and implies that our vocal cords are highly
complex and speaker specific. The low performance with the
i-vector model on the trivial events should not be explained
as little speaker information embedded within these events;
instead, it is just because the i-vector model cannot extract
the information and utilize it well.

Comparing the results on cough and laugh, it can be seen
that the performance on laugh is slightly worse than on cough.
This is again a little unexpected. From our experience, it
seems that we can recognize a person easier by her/his laugh
than cough. A possible explanation is that the laugh speech
may involve significant within-speaker variations, due to the
freedom within the vocal tract modulation. The cough, on the
other hand, is less modulated by the vocal tract and thus more
stable. To have an intuitive comparison, Figure 3 shows the
spectra of three cough segments and three laugh segments

from the same speaker. It can be seen that the three laugh
segments are clearly different, while the cough segments are
pretty much the same.

Finally, we found that for both two systems, the discrim-
inative normalization approaches, LDA and PLDA, did not
provide clear advantage. This is particularly the case for the i-
vector system for which all the normalization methods reduce
the performance on all the three types of trivial events. A
possible reason is that trivial events are different from regular
speech, so the LDA and PLDA models trained with the regular
speech database are not very suitable. This argument explains
why the performance reduction with the normalization meth-
ods is most significant on cough, if we admit that cough is
the most distinct from regular speech among the three types
of events.
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Fig. 3. The spectra of (a) Cough (b) Laugh segments of the same speaker.

D. Feature discrimination

In the last experiment, we investigate the distribution of
the deep speaker features, particularly the speaker variations
with these three types of trivial events. For this purpose, we
randomly selected 10 speakers, and drew the speaker features
belonging to these three types of events respectively using t-
SNE [14]. The results are presented in Figure 4. It can be seen
that the learned features with “Wei” are reasonably discrimi-
native for speakers. But there are still variations appeared in
cough and laugh figures as seen from the plot (a) and (b).

V. CONCLUSIONS

This paper employed the deep speaker feature learning
approach to perform SRE on trivial events, and the focus was
put on cough, laugh and “Wei”. Our experiments showed that
the deep feature model trained on a regular speech database
(Fisher) can be used to perform trivial event SRE with an
unexpected success. In spite of the extremely short duration,
the EER can be as low as 10%-14%, depending on the type
of events. These results can answer the questions raised in the
introduction session:

• Does a particular trivial event involve speaker informa-
tion? Yes. At least for the three trivial events studied in
this paper, rich speaker information is involved.
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Fig. 4. Deep speaker features on events (a) Cough (b) Laugh (c) “Wei” randomly sampled from 10 speakers. The pictures are plotted by t-SNE, with each
color representing a speaker.

• Can the speaker information, if exists in a trivial event,
be extracted from the short segment? Yes. The deep
feature approach was capable of extracting the speaker
information from the short and idiocratic trivial events.

• Can the deep feature model trained with a regular speech
database be migrated to recognize trivial event segments?
Yes. A DNN model trained with the Fisher database
worked well on trivial event SRE.

There is much work remaining: how about the performance
on other trivial events, e.g., En, Ah, tapping and flapping
speech? What is the implication of the experimental results
for the acoustic and linguistic research? How the performance
will be in a true scenario of speech disguise? All are under
investigation.
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