
Yin et al.

CSLT TECHNICAL REPORT-20150001 [Saturday 10th January, 2015]

Noisy Training for Deep Neural Networks in
Speech Recognition
Shi Yin1,4, Chao Liu1,3, Zhiyong Zhang1,2, Yiye Lin1,5, Dong Wang1,2*, Javier Tejedor6, Thomas Fang

Zheng1,2 and Yinguo Li4

*Correspondence: wang-

dong99@mails.tsinghua.edu.cn
1Center for Speech and Language

Technology, Research Institute of

Information Technology, Tsinghua

University, ROOM 1-303, BLDG

FIT, 100084 Beijing, China

Full list of author information is

available at the end of the article

Abstract

Deep neural networks (DNN) have gained remarkable success in speech
recognition, partially attributed to the flexibility of DNN models in learning
complex patterns of speech signals. This flexibility, however, may lead to serious
over-fitting and hence miserable performance degradation in adverse acoustic
conditions such as those with high ambient noises. We propose a noisy training
approach to tackle this problem: by injecting moderate noises into the training
data intentionally and randomly, more generalizable DNN models can be learned.
This ‘noise injection’ technique, although known to the neural computation
community already, has not been studied with DNNs which involve a highly
complex objective function. The experiments presented in this paper confirm that
the noisy training approach works well for the DNN model and can provide
substantial performance improvement for DNN-based speech recognition.

Keywords: speech recognition; deep neural network; noise injection

1 Introduction
A modern automatic speech recognition (ASR) system involves three components:

an acoustic feature extractor to derive representative features for speech signals, an

emission model to represent static properties of the speech features, and a transi-

tional model to depict dynamic properties of speech production. Conventionally, the

dominant acoustic features in ASR are based on short-time spectral analysis, e.g.,

Mel frequency cepstral coefficients (MFCC). The emission and transition models

are often chosen to be the Gaussian mixture model (GMM) and the hidden Markov

model (HMM), respectively.

Deep neural networks (DNN) have gained brilliant success in many research fields

including speech recognition, computer vision (CV), and natural language process-

ing (NLP) [1]. A DNN is a neural network (NN) that involves more than one hidden

layer. NNs have been studied in the ASR community for a decade, mainly in two

approaches: in the ‘hybrid approach’, the NN is used to substitute for the GMM to

produce frame likelihood [2], and in the ‘tandem approach’, the NN is used to pro-

duce long-context features that are used to substitute for or augment to short-time

features, e.g., MFCCs [3].

Although promising, the NN-based approach, either by the hybrid setting or the

tandem setting, did not deliver overwhelming superiority over the conventional ap-

proaches based on MFCCs and GMMs. The revolution took place in 2010 after

the close collaboration between academic and industrial research groups, including



Yin et al. Page 2 of 21

University of Toronto, Microsoft, and IBM [1, 4, 5]. This research found that very

significant performance improvements can be accomplished with the NN-based hy-

brid approach, with a few novel techniques and design choices: (1) extending NNs

to DNNs, i.e., involving a large number of hidden layers (usually 4-8); (2) employing

appropriate initialization methods, e.g., pre-training with restricted Boltzmann ma-

chines (RBMs); (3) using fine-grained NN targets, e.g., context-dependent states.

Since then, numerous experiments have been published to investigate various con-

figurations of the DNN-based acoustic modeling, and all the experiments confirmed

that the new model is predominantly superior to the classical architecture based on

GMMs [2, 4, 6, 7, 8, 9, 10, 11, 12, 13].

Encouraged by the success of DNNs in the hybrid approach, researchers reevalu-

ated the tandem approach using DNNs and achieved similar performance improve-

ments [3, 14, 15, 16, 17, 18, 19, 20]. Some comparative studies were conducted for

the hybrid and tandem approaches, though no evidence supports that one approach

clearly outperforms the other [21, 22]. The study of this paper is based on the hybrid

approach, though the developed technique can be equally applied to the tandem

approach.

The advantage of DNNs in modeling state emission distributions, when com-

pared to the conventional GMM, has been discussed in some previous publications,

e.g., [1, 2]. Although no full consentience exists, researchers agree on some points,

e.g., the DNN is naturally discriminative when trained with an appropriate ob-

jective function, and it is a hierarchical model that can learn patterns of speech

signals from primitive levels to high levels. Particularly, DNNs involve very flexible

and compact structures: it usually consists of a large amount of parameters and the

parameters are highly shared among feature dimensions and task targets (phones

or states). This flexibility, on one hand, leads to very strong discriminative models,

and on the other hand, may cause serious over-fitting problems, leading to miser-

able performance reduction if the training and test conditions are mismatched. For

example, when the training data are mostly clean and the test data are corrupted

by noises, ASR performance usually suffers from a substantial degradation. This

over-fitting is particularly serious if the training data are not abundant [23].

A multitude of research has been conducted to improve noise robustness of DNN

models. The multi-condition training approach was presented in [24], where DNNs

were trained by involving speech data in various channel/noise conditions. This ap-

proach is straightforward and usually delivers good performance, though collecting

multi-condition data is not always possible. Another direction is to use noise-robust

features, e.g., auditory features based on Gammatone filters [23]. The third di-

rection involves various speech enhancement approaches. For example, the vector

Taylor series (VTS) was applied to compensate for input features in an adaptive

training framework [25]. The authors of [26] investigated several popular speech

enhancement approaches and found that the maximum likelihood spectral ampli-

tude estimator (MLSA) is the best spectral restoration method for DNNs trained

with clean speech and tested on noisy data. Some other researches involve noise

information in DNN inputs and trains a ‘noise aware’ network. For instance, [27]

used the VTS as the noise estimator to generate noise-dependent inputs for DNNs.

Another related technique is the denoising auto-encoder (DAE) [28]. In this ap-

proach, some noises are randomly selected and intentionally injected to the original



Yin et al. Page 3 of 21

clean speech; the noise-corrupted speech data are then fed to an auto-encoder (AE)

network where the targets (outputs) are the original clean speech. By this configu-

ration, the AE will learn the denoising function in a non-linear way. Note that this

approach is not particular for ASR, but a general denoising technique. The authors

of [29] extended this approach by introducing recurrent NN structures and demon-

strated that the deep and recurrent auto-encoder can deliver better performance

for ASR in most of the noise conditions they examined.

This paper presents a noisy training approach for DNN-based ASR. The idea is

simple: by injecting some noises to the input speech data when conducting DNN

training, the noise patterns are expected to be learned, and the generalization ca-

pability of the resulting network is expected to be improved. Both may improve

robustness of DNN-based ASR systems within noisy conditions. Note that part of

the work has been published in [30], though this paper presents a full discussion of

the technique and reports extensive experiments.

The paper is organized as follows: Section 2 discusses some related work, and

Section 3 presents the proposed noisy training approach. The implementation details

are presented in Section 4, and the experimental settings and results are presented

in Section 5. The entire paper is concluded in Section 6.

2 Related work
The noisy training approach proposed in this paper was highly motivated by the

noise injection theory which has been known for decades in the neural computing

community [31, 32, 33, 34]. This paper employs this theory and contributes in two

aspects: first, we examine the behavior of noise injection in DNN training, a more

challenging task involving a huge amount of parameters; second, we study mixture of

multiple noises at various levels of signal-to-noise ratios (SNR), which is beyond the

conventional noise injection theory that assumes small and Gaussian-like injected

noises.

Another work related to this study is the DAE approach [28, 29]. Both the DAE

and the noisy training approaches corrupt NN inputs by randomly sampled noises.

Although the objective of the DAE approach is to recover the original clean signals,

the focus of the noisy training approach proposed here is to construct a robust

classifier.

Finally, this work is also related to the multi-condition training [24], in the sense

that both train DNNs with speech signals in multiple conditions. However, the noisy

training obtains multi-conditioned speech data by corrupting clean speech signals,

while the multi-condition training uses real-world speech data recorded in multiple

noise conditions. More importantly, we hope to set up a theoretical foundation and

a practical guideline for training DNNs with noises, instead of just regarding it as

a blind noise pattern learner.

3 Noisy training
The basic process of noisy training for DNNs is as follows: first of all, sample some

noise signals from some real-world recordings, and then mix these noise signals with

the original training data. This operation is also referred to as ‘noise injection’ or

‘noise corruption’ in this paper. The noise-corrupted speech data are then used to



Yin et al. Page 4 of 21

train DNNs as usual. The rationale of this approach is two-fold: firstly, the noise

patterns within the introduced noise signals can be learned and thus compensated

for in the inference phase, which is straightforward and shares the same idea as the

multi-condition training approach; secondly, the perturbation introduced by the

injected noise can improve generalization capability of the resulting DNN, which is

supported by the noise injection theory. We discuss these two aspects sequentially

in this section.

3.1 Noise pattern learning

The impact of injecting noises in training data can be understood as providing some

noise-corrupted instances so that they can be learned by the DNN structure and

recognized in the inference (test) phase. From this perspective, the DNN and GMM

are of no difference, since both can be benefit from matched acoustic conditions of

training and testing, by either re-training or adaptation.

However, the DNN is more powerful in noise pattern learning than the GMM.

Due to its discriminative nature, the DNN model focuses on phone/state bound-

aries, and the boundaries it learns might be highly complex. Therefore, it is capable

of addressing more severe noises and dealing with heterogeneous noise patterns. For

example, a DNN may obtain a reasonable phone classification accuracy in a very

noisy condition, if the noise does not drastically change the decision boundaries

(e.g., with car noise). In addition, noises of different types and at different magni-

tude levels can be learned simultaneously, as the complex decision boundaries that

the DNN classifier may learn provides sufficient freedom to address complicated

decisions in heterogeneous acoustic conditions.

In contrast, the GMM is a generative model and focuses on class distributions. The

decision boundaries a GMM learns (which are determined by the relative locations

of the GMM components of phones/states) are relative much simpler than those

a DNN model learns. Therefore, it is difficult for GMMs to address heterogeneous

noises.

The above argument explains some interesting observations in the DNN-based

noise training in our experiments. First, learning a particular type of noise does not

necessarily lead to performance degradation in another type of noise. In fact, our

experiments show that learning a particular noise usually improves performances on

other noises, only if the property of the ‘unknown’ noise is not drastically different

from the one that has been learned. This is a clear advantage over GMMs, for which

a significant performance reduction is often observed when the noise conditions of

training and test data are unmatched.

Moreover, our experiments show that learning multiple types of noises are not

only possible, but also complementary. As we will see shortly, learning two noises

may lead to better performance than learning any single noise, when the test data

are corrupted by either of the two noises. This is also different from GMMs, for

which learning multiple noises generally leads to interference among each other.

The power of DNNs in learning noise patterns can be understood in a deeper way,

from three perspectives. Firstly, the DNN training is related to feature selection.

Due to the discriminative nature, the DNN training can infer the most discrimina-

tive part of the noise-corrupted acoustic features. For instance, with the training



Yin et al. Page 5 of 21

data corrupted by car noise, the DNN training process will learn that the corruption

is mainly on the low frequency part of the signal, and so the low frequency compo-

nents of the speech features are deemphasized in the car noise condition. Learning

the car noise, however, did not seriously impact the decision boundaries in other

conditions in our experiments, e.g., with clean speech, probably due to the com-

plicated DNN structure that allows to learn noise-conditioned decision boundaries.

Moreover, learning car noise may benefit other noise conditions where the corrup-

tion mainly resides in low frequency components (as the car noise), even though

the noise is not involved in the training.

Secondly, the DNN training is related to perceptual classification. Thanks to the

multi-layer structure, DNNs learn noise patterns gradually. This means that the

noise patterns presented to the DNN inputs are learned together with the speech

patterns at low levels, but only at high levels, the noise patterns are recognized

and deemphasized in the decision. This provides a large space for DNNs to learn

heterogeneous noise patterns and ‘memorize’ them in the abundant parameters.

This process also simulates the processing procedure of the human brain, where

noise patterns are processed and recognized by the peripheral auditory system but

are ignored in the final perceptual decision by the central neural system.

Finally, the DNN training is related to the theory of regularization. All admit

that a large amount of parameters of DNNs allow great potential to learn complex

speech and noise patterns and their class boundaries. If the training is based on

clean speech only, however, the flexibility provided by the DNN structure is largely

wasted. This is because the phone class boundaries are relatively clear with clean

speech, and so the abundant parameters of DNNs tend to learn the nuanced varia-

tions of phone implementations, conditioned on a particular type of channel and/or

background noise. This is a notorious over-fitting problem. By injecting random

noises, the DNN training is enforced to emphasize on the most discriminative pat-

terns of speech signals. In other words, the DNNs trained with noise injection tend

to be less sensitive to noise corruptions. This intuition is supported by the noise

injection theory as presented in the next section.

3.2 Noise injection theory

It has been known for two decades that imposing noises to the input can improve

generalization capability of neural networks [35]. A bunch of theoretical studies have

been presented to understand the implication of this ‘noise injection’. Nowadays,

it is clear that involving a small magnitude of noise in the input is equivalent

to introducing a certain regularization in the objective function, which in turn

encourages the network converging to a smoother mapping function [36]. More

precisely, with noise injection, the training favors an optimal solution at which

the objective function is less sensitive to the change of the input [32]. Further

studies showed that noise injection is closely correlated to some other well-known

techniques, including sigmoid gain scaling and target smoothing by convolution [37],

at least with Gaussian noises and multi-layer perceptrons (MLP) with a single

layer. The relationships among regularization, weight decay and noise injection, on

one hand, provide a better understanding for each individual technique, and on

the other hand, motivate some novel and efficient robust training algorithms. For



Yin et al. Page 6 of 21

example, Bishop showed that noise injection can be approximated by a Tikhonov

regularization on the square error cost function [33]. Finally, we note that noise

injection can be conducted in different ways, such as perturbation on weights and

hidden units [31], though we just consider the noise injection to the input in this

paper.

In order to highlight the rationale of noise injection (and so noisy training), we

reproduce the formulation and derivation in [32], but migrate the derivation to the

case of cross entropy cost which is usually used in classification problems such as

ASR.

First of all, formulate an MLP as a nonlinear mapping function fθ : RM 7−→ RK

where M is the input dimension and K is the output dimension, and θ encodes all

the parameters of the network including weights and biases. Let x ∈ RM denote the

input variables, and y ∈ {0, 1}K denote the target labels which follow the 1-of-K

encoding scheme. The cross entropy cost is defined as follows:

E(θ) = −
N∑
n=1

K∑
k=1

{y(n)lnfk(x(n))} (1)

where n indexes the training samples and k indexes the output units. Considering

an identical and independent noise v whose first and second moments satisfy the

following constraints:

E{v} = 0 E{v2} = εI (2)

where I is the M -dimensional identity matrix, and ε is a small positive number.

Applying the Taylor series of lnf(x), the cost function with the noise injection can

be derived as follows:

Ev(θ) = −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x(n) + v(n))}

≈ −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x(n))}

−
N∑
n=1

K∑
k=1

y
(n)
k {v

(n)T 5fk(x(n))

fk(x(n))
+

1

2
v(n)THk(x(n))v(n)}

where Hk(x) is defined as follows:

Hk(x) =
−1

fk(x)
5 fk(x)5 fk(x)

T
+

1

f2k (x)
52 fk(x).

Since v(n) is independent of x(n) and E{v} = 0, the first order item vanishes and

the cost is written as:



Yin et al. Page 7 of 21

Ev(θ) ≈ E(θ)− ε

2

K∑
k=1

tr(H̃k) (3)

where tr denotes the trace operation, and

H̃k =
∑
n∈Ck

Hk(x(n))

where Ck is the set of indices of the training samples belonging to the k-th class.

In order to understand the implication of Eq. (3), an auxiliary function can be

defined as follows:

E(θ,v) = −
N∑
n=1

K∑
k=1

{y(n)
k lnfk(x(n) + v)}

where v is a small change to the input vectors {x(n)}. Note that E(θ,v) differs from

Ev(θ): v in E(θ,v) is a fixed value for all x(n), while v(n) in Ev(θ) is a random

variable and differs for each training sample. The Laplacian of E(θ,v) with respect

to v is computed as follows:

52E(θ,v) = tr{∂
2E(θ,v)

∂v2
}

= −tr{
N∑
n=1

K∑
k=1

y
(n)
k Hk(x(n) + v)}

= −tr{
K∑
k=1

∑
n∈Ck

Hk(x(n) + v)}. (4)

By comparing Eq. (4) and Eq. (3), we get:

Ev(θ) ≈ E(θ) +
ε

2
52 E(θ, 0). (5)

Eq. (5) indicates that injecting noises to the input units is equivalent to placing

a regularization on the cost function. This regularization is related to the second

order derivatives of the cost function with respect to the input, and its strength

is controlled by the magnitude of the injected noise. Since 52E(θ, 0) is positive at

the optimal solution of θ, the regularized cost function tends to accept solutions

with a smaller curvature of the cost. In other words, the new cost function Ev(θ) is

less sensitive to the change on inputs, and therefore leads to better generalization

capability. Note that this result is identical to the one obtained in [32], where the

cost function is the square error.



Yin et al. Page 8 of 21

4 Noisy deep learning

From the previous section, the validity of the noisy training approach can be justified

in two ways: discriminative noise pattern learning and objective function smoothing.

The former provides the ability to learn multiple noise patterns, and the latter

encourages a more robust classifier. However, it is still unclear if the noisy training

scheme works for the DNN model which involves a large number of parameters and

thus tends to exhibit a highly complex cost function. Particularly, the derivation of

Eq. (5) assumes small noises with diagonal covariances, while in practice we wish to

learn complex noise patterns that may be large in magnitude and fully dimensional

correlated. Furthermore, the DNN training is easy to fall in a local minimum, and

it is not obvious if the random noise injection may lead to fast convergence.

We therefore investigate how the noise training works for DNNs when the injected

noises are large in magnitude and heterogeneous in types. In order to simulate noises

in practical scenarios, the procedure illustrated in Fig. 1 is proposed.

For each speech signal (utterance), we first select a type of noise to corrupt it.

Assuming that there are n types of noises, we randomly select a noise type following

a multinomial distribution:

v ∼Mult(µ1, µ2, ..., µn).

The parameters {µi} are sampled from a Dirichlet distribution:

(µ1, µ2, ..., µn) ∼ Dir(α1, α2, ..., αn)

where the parameters {αi} are manually set to control the base distribution of the

noise types. This hierarchical sampling approach (Dirichlet followed by multinomial)

simulates the uncertain noise type distributions in different operation scenarios.

Note that we allow a special noise type ‘no-noise’, which means that the speech

signal is not corrupted.

Secondly, sample the noise level (i.e., SNR). This sampling follows a Gaussian

distribution N (µSNR, σSNR) where µSNR and σSNR are the mean and variance

respectively, and are both manually defined. If the noise type is no-noise, then the

SNR sampling is not needed.

The next step is to sample an appropriate noise segment according to the noise

type. This is achieved following a uniformed distribution, i.e., randomly select a

starting point b in the noise recording of the required noise type, and then excerpt

a segment of signal which is of the same length as the speech signal to corrupt.

Circular excerption is employed if the length of the noise signal is less than the

speech signal.

Finally, the selected noise segment is scaled to reach the required SNR level, and

then is used to corrupt the clean speech signal. The noise-corrupted speech is fed

into the DNN input units to conduct model training.



Yin et al. Page 9 of 21

noise

recordings

Figure 1 The noise training procedure. ‘Dir’ denotes the Dirichlet distribution, ‘Mult’ denotes
the multinomial distribution, and ‘N ’ denotes the Gaussian distribution. v is a variable that
represents the noise type, b represents the starting frame of the selected noise segment, and SNR
is the expected SNR of the corrupted speech data.

5 Experiments
5.1 Databases

The experiments were conducted with the Wall Street Journal (WSJ) database. The

setting is largely standard: the training part used the WSJ si284 training dataset,

which involves 37318 utterances or about 80 hours of speech signals. The WSJ dev93

dataset (503 utterances) was used as the development set for parameter tuning and

cross validation in DNN training. The WSJ eval92 dataset (333 utterances) was

used to conduct evaluation.

Note that the WSJ database was recorded in a noise-free condition. In order to

simulate noise-corrupted speech signals, the DEMAND noise database[1] was used

to sample noise segments. This database involves 18 types of noises, from which

we selected 7 types in this work, including white noise and noises at cafeteria, car,

restaurant, train station, bus and park.

5.2 Experimental settings

We used the Kaldi toolkit[2] to conduct the training and evaluation, and largely

followed the WSJ s5 recipe for Graphics Processing Unit (GPU)-based DNN train-

ing. Specifically, the training started from a monophone system with the standard

13-dimensional MFCCs plus the first and second order derivatives. Cepstral mean

normalization (CMN) was employed to reduce the channel effect. A triphone system

was then constructed based on the alignments derived from the monophone system,

and a Linear Discriminant Analysis (LDA) transform was employed to select the

most discriminative dimensions from a large context (5 frames to the left and right

respectively). A further refined system was then constructed by applying a maxi-

mum likelihood linear transform (MLLT) upon the LDA feature, which intended to

reduce the correlation among feature dimensions so that the diagonal assumption of

[1]http://parole.loria.fr/DEMAND/
[2]http://kaldi.sourceforge.net/



Yin et al. Page 10 of 21

the Gaussians is satisfied. This MLLT+LDA system involves 351 phones and 3447

Gaussian mixtures, and was used to generate state alignments.

The DNN system was then trained utilizing the alignments provided by the

MLLT+LDA GMM system. The feature used was 40-dimensional filter banks. A

symmetric 11-frame window was applied to concatenate neighboring frames, and

an LDA transform was used to reduce the feature dimension to 200. The LDA-

transformed features were used as the DNN input.

The DNN architecture involves 4 hidden layers and each layer consists of 1200

units. The output layer is composed of 3447 units, equal to the total number of

Gaussian mixtures in the GMM system. The cross entropy was set as the objec-

tive function of the DNN training, and the stochastic gradient descendent (SGD)

approach was employed to perform optimization, with the mini batch size set to

256 frames. The learning rate started from a relatively large value (0.008), and was

then gradually shrunk by halving the value whenever no improvement on frame ac-

curacy on the development set was obtained. The training stopped when the frame

accuracy improvement on the cross validation data was marginal (less than 0.001).

Neither momentum nor regularization was used, and no pre-training was employed

since we did not observe clear advantage by involving these techniques.

In order to inject noises, the averaged energy was computed for each training/test

utterance, and a noise segment was randomly selected and scaled according to the

expected SNR; the speech and noise signals were then mixed by simple time-domain

addition. Note that the noise injection was conducted before the utterance-based

CMN. In the noisy training, the training data were corrupted by the selected noises,

while the development data used for cross validation remained uncorrupted. The

DNNs reported in this section were all initialized from scratch and were trained

based on the same alignments provided by the LDA+MLLT GMM system. Note

that the process of the model training is reproducible in spite of the randomness on

noise injection and model initialization, since the random seed was hard-coded.

In the test phase, the noise type and SNR are all fixed so that we can evaluate the

system performance in a specific noise condition. This is different from the training

phase where both the noise type and SNR level can be random. We choose the

‘big dict’ test case suggested in the Kaldi WSJ recipe, which is based on a large

dictionary consisting of 150k English words and a corresponding 3-gram language

model.

Table 1 presents the baseline results, where the DNN models were trained with

clean speech data, and the test data were corrupted with different types of noises

at different SNRs. The results are reported in word error rates (WER) on the

evaluation data. We observe that without noise, a rather high accuracy (4.31%)

can be obtained; with noise interference, the performance is dramatically degraded,

and more noise (a smaller SNR) results in more serious degradation. In addition,

different types of noises impact the performance in different degrees: the white noise

is the most serious corruption which causes a 10 times of WER increase when the

SNR is 10dB; in contrast, the car noise is the least impactive: It causes a relatively

small WER increase (37% in relative) even if the SNR goes below 5dB.

The different behaviors in WER changes can be attributed to the different patterns

of corruptions with different noises: white noise is broad-band and so it corrupts



Yin et al. Page 11 of 21

Table 1 WER of the baseline system.

WER%
Test SNR(dB) 5 10 15 20 25 clean
White 77.23 46.46 21.21 9.30 5.51 4.31
Car 5.94 5.42 4.87 4.77 4.50 4.31
Cafeteria 25.33 14.27 10.07 8.38 6.88 4.31
Restaurant 46.87 22.15 13.27 9.73 7.48 4.31
Train Station 34.36 12.72 6.93 5.40 4.43 4.31
Bus 13.88 8.44 6.57 5.51 4.84 4.31
Park 22.10 11.25 7.44 5.87 4.63 4.31

speech signals on all frequency components; in contrast, most of the color noises

concentrate on a limited frequency band and so lead to limited corruptions. For

example, car noise concentrates on low frequencies only, leaving most of the speech

patterns uncorrupted.

5.3 Single noise injection

In the first set of experiments, we study the simplest configuration for the noisy

training, which is a single noise injection at a particular SNR. This is simply at-

tained by fixing the injected noise type and selecting a small σSNR so that the

sampled SNRs concentrate on the particular level µSNR. In this section, we choose

σSNR=0.01.

5.3.1 White noise injection

We first investigate the effect of white noise injection. Among all the noises, the

white noise is rather special: it is a common noise that we encounter every day, and

it is broad-band and often leads to drastic performance degradation compared to

other narrow-band noises, as has been shown in the previous section. Additionally,

the noise injection theory discussed in Section 3 shows that white noise satisfies Eq.

(2) and hence leads to the regularized cost function of Eq. (5). This means that

injecting white noise would improve generalization capability of the resulting DNN

model; this is not necessarily the case for most of other noises.

Fig. 2 presents the WER results, where the white noise is injected during training

at SNR levels varying from 5dB to 30dB, and each curve represents a particular

SNR case. The first plot shows the WER results on the evaluation data that are

corrupted by white noise at different SNR levels from 5d to 25dB. For compari-

son, the results on the original clean evaluation data are also presented. It can be

observed that injecting white noise generally improves ASR performance on noisy

speech, and a matched noise injection (at the same SNR) leads to the most sig-

nificant improvement. For example, injecting noise at an SNR of 5dB is the most

effective for the test speech at an SNR of 5dB, while injecting noise at an SNR of

25dB leads to the best performance improvement for the test speech at an SNR

of 25dB. A serious problem, however, is that the noise injection always leads to

performance degradation on clean speech. For example, the injection at an SNR

of 5dB, although very effective for highly noisy speech (SNR < 10dB), leads to a

WER 10 times higher than the original result on the clean evaluation data.

The second and third plots show the WER results on the evaluation data that are

corrupted by car noise and cafeteria noise respectively. In other words, the injected

noise in training does not match the noise condition in test. It can be seen that



Yin et al. Page 12 of 21

5 10 15 20 25 clean
0

10

20

30

40

50

60

70

80

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(a) White noise test

5 10 15 20 25 clean
0

10

20

30

40

50

60

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(b) Car noise test

5 10 15 20 25 clean
0

5

10

15

20

25

30

35

40

45

50

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(c) Cafeteria noise test

Figure 2 Performance of noisy training with white noise injected (σ = 0.01). ‘TR’ means the
training condition. The ‘baseline’ curves present the results of the system trained with clean
speech data, as have been presented in Table 1.

the white noise injection leads to some performance gains on the evaluation speech

corrupted by the cafeteria noise, as far as the injected noise is limited in magnitude.

This demonstrated that the white noise injection can improve the generalization

capability of the DNN model, as predicted by the noise injection theory in Section 3.

For the car noise corruption, however, the white noise injection does not show any

benefit. This is perhaps attributed to the fact that the cost function Eq. (1) is not so

bumpy with respect to the car noise, and hence the regularization term introduced

in Eq. (3) is less effective. This conjecture is supported by the baseline results which

show very little performance degradation with the car noise corruption.

In both the car and cafeteria noise conditions, if the injected white noise is too

strong, then the ASR performance is drastically degraded. This is because a strong

white noise injection does not satisfy the small noise assumption of Eq. (2) and

hence the regularized cost Eq. (3) does not hold anymore. This, on one hand, breaks

the theory of noise injection so that the improved generalization capability is not

guaranteed, and on the other hand, it results in biased learning towards the white

noise-corrupted speech patterns that are largely different from the ones that are

observed in speech signals corrupted by noises of cars and cafeterias.

As a summary, white noise injection is effective in two ways: for white noise-

corrupted test data, it can learn white noise-corrupted speech patterns and provides



Yin et al. Page 13 of 21

dramatic performance improvement particularly at matched SNRs; for test data

corrupted by other noises, it can deliver a more robust model if the injection is in a

small magnitude, especially for noises that cause a significant change on the DNN

cost function. An aggressive white noise injection (with a large magnitude) usually

leads to performance reduction on test data corrupted by color noises.

5.3.2 Color noise injection

Besides white noise, in general any noise can be used to conduct the noisy training.

We choose the car noise and the cafeteria noise in this experiment to investigate

the color noise injection. The results are shown in Fig. 3 and Fig. 4 respectively.

For the car noise injection (Fig. 3), we observe that it is not effective for the

white noise-corrupted speech. However, for the test data corrupted by car noise and

cafeteria noise, it indeed delivers performance gains. The results with the car noise-

corrupted data show clear advantage with matched SNRs, i.e., with the training

and test data corrupted by the same noise at the same SNR, the noise injection

tends to deliver better performance gains. For the cafeteria noise-corrupted data,

it shows that a mild noise injection (SNR=10dB) performs the best. This indicates

that there are some similarities between car noise and cafeteria noise, and learning

patterns of car noise is useful to improve robustness of the DNN model against

corruptions caused by cafeteria noise.

For the cafeteria noise injection (Fig. 4), some improvement can be attained with

data corrupted by both white noise and cafeteria noise. For the car noise-corrupted

data, performance gains are found only with mild noise injections. This suggests

that cafeteria noise possesses some similarities to both white noise and car noise: It

involves some background noise which is generally white, and some low frequency

components that resemble car noise. Without surprise, the most performance im-

provement is attained with data corrupted by cafeteria noise.

5.4 Multiple noise injection

In the second set of experiments, multiple noises are injected when performing noisy

training. For simplicity, we fix the noise level at SNR=15dB, which is obtained by

setting µSNR = 15 and σSNR = 0.01. The hyperparameters {αi} in the noise-type

sampling are all set to 10, which generates a distribution on noise types roughly

concentrated in the uniform distribution but with a sufficiently large variation.

The first configuration injects white noise and car noise, and test data are cor-

rupted by all the 7 noises. The results in terms of absolute WER reduction are

presented in plot (a) of Fig. 5. It can be seen that with the noisy training, almost

all the WER reductions (except in the clean speech case) are positive, which means

that the multiple noise injection improves the system performance in almost all the

noise conditions. An interesting observation is that this approach delivers general

good performance gains for the unknown noises, i.e., the noises other than the white

noise and the car noise.

The second configuration injects white noise and cafeteria noise; again the con-

ditions with all the 7 noises are tested. The results are presented in plot (b) of

Fig. 5. We observe a similar pattern as in the case of white+car noise (plot (a)):

The performance on speech corrupted by any noise is significantly improved. The



Yin et al. Page 14 of 21

5 10 15 20 25 clean
0

10

20

30

40

50

60

70

80

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(a) White noise test

5 10 15 20 25 clean
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(b) Car noise test

5 10 15 20 25 clean
0

5

10

15

20

25

30

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(c) Cafeteria noise test

Figure 3 Performance of noisy training with car noise injected (σ = 0.01). ‘TR’ means the
training condition. The ‘baseline’ curves present the results of the system trained with clean
speech data, as have been presented in Table 1.

difference from plot (a) is that the performance on the speech corrupted by cafeteria

noise is more effectively improved, while the performance on the speech corrupted

by car noise is generally decreased. This is not surprising as the cafeteria noise is

now ‘known’ and the car noise becomes ‘unknown’. Interestingly, the performance

on speech corrupted by the restaurant noise and the station noise are both improved

in a more effective way than in plot (a). This suggests that the cafeteria noise shares

some patterns with these two types of noises.

As a summary, the noisy training based on multiple noise injection is effective

in learning patterns of multiple noise types, and it usually leads to significant im-

provement of ASR performance on speech data corrupted by the noises that have

been learned. This improvement, interestingly, can be well generalized to unknown

noises. In all the 7 investigated noises, the behavior of the car noise is abnormal,

which suggests that car noise is unique in properties and is better to be involved in

noisy training.

5.5 Multiple noise injection with clean speech

An obvious problem of the previous experiments is that the performance on clean

speech is generally degraded with noisy training. A simple approach to alleviate the



Yin et al. Page 15 of 21

5 10 15 20 25 clean
0

10

20

30

40

50

60

70

80

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(a) White noise test

5 10 15 20 25 clean
4

4.5

5

5.5

6

6.5

7

7.5

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(b) Car noise test

5 10 15 20 25 clean
0

5

10

15

20

25

30

Test SNR (db)

W
E

R
%

 

 
baseline
TR SNR=5db
TR SNR=10db
TR SNR=15db
TR SNR=20db
TR SNR=25db
TR SNR=30db

(c) Cafeteria noise test

Figure 4 Performance of noisy training with cafeteria noise injected (σ = 0.01). ‘TR’ means the
training condition. The ‘baseline’ curves present the results of the system trained with clean
speech data, as have been presented in Table 1.

problem is to involve clean speech in the training. This can be achieved by sampling

a special ‘no-noise’ type together with other noise types. The results are reported in

Fig. 6, where plot (a) presents the configuration with white+car noise and plot (b)

presents the configuration with white+cafeteria noise. We can see that with clean

speech involved in the noisy training, the performance degradation on clean speech

is largely solved.

Interestingly, involving clean speech in the noisy training improves performance

not only on clean data, but also on noise-corrupted data. For example, plot (b) shows

that involving clean speech leads to general performance improvement on test data

corrupted by car noise, which is quite different from the results shown in plot (b)

of Fig. 5, where clean speech is not involved in the training and the performance on

speech corrupted by car noise is actually decreased. This interesting improvement

on noise data is maybe due to the ‘no-noise’ data that provide information about

the ‘canonical’ patterns of speech signals, with which the noisy training is easier to

discover the invariant and discriminative patterns that are important for recognition

on both clean and corrupted data.

We note that the noisy training with multiple noise injection resembles the multi-

condition training: Both involve training speech data under multiple noise condi-



Yin et al. Page 16 of 21

5 10 15 20 25 clean
−10

0

10

20

30

40

50

60

Test SNR (db)

W
E

R
%

 r
ed

uc
tio

n

 

 
white
car
cafeteria
restaurant
station
bus
park

(a) White & car noise

5 10 15 20 25 clean
−10

0

10

20

30

40

50

60

Test SNR (db)

W
E

R
%

 r
ed

uc
tio

n

 

 
white
car
cafeteria
restaurant
station
bus
park

(b) White & cafeteria noise

Figure 5 Performance of multiple noise injection. No clean speech is involved in training.

5 10 15 20 25 clean
−10

0

10

20

30

40

50

60

Test SNR (db)

W
E

R
%

 r
ed

uc
tio

n

 

 
white
car
cafeteria
restaurant
station
bus
park

(a) White & car noise

5 10 15 20 25 clean
−10

0

10

20

30

40

50

60

Test SNR (db)

W
E

R
%

 r
ed

uc
tio

n

 

 
white
car
cafeteria
restaurant
station
bus
park

(b) White & cafeteria noise

Figure 6 Performance of multiple noise injection with clean speech involved in training.

tions. However, there is an evident difference between the two approaches: In multi-

conditional training, the training data are recorded under multiple noise conditions

and the noise is unchanged across utterances of the same session; in noisy training,

noisy data are synthesized by noise injection, so it is more flexible in noise selection

and manipulation, and the training speech data can be utilized more efficiently.

5.6 Noise injection with diverse SNRs

The flexibility of noisy training in noise selection can be further extended by involv-

ing multiple SNR levels. By involving noise signals at various SNRs, more abundant

noise patterns can be learned. More importantly, we hypothesize that the abundant

noise patterns provide more negative learning examples for DNN training, so the

‘true speech patterns’ can be better learned.

The experimental setup is the same as the previous experiment, i.e., fixing

µSNR=15dB and then injecting multiple noises including ‘non-noise’ data. In order

to introduce diverse SNRs, σSNR is set to be a large value. In this study, σSNR

varies from 0.01 to 50. A larger σSNR leads to more diverse noise levels and higher

possibility for loud noises. For simplicity, only the results with white+cafeteria noise



Yin et al. Page 17 of 21

injection are reported, while other configurations were experimented and the con-

clusions are similar.

Firstly, we examine the performance with ‘known noises’, i.e., data corrupted by

white noise and cafeteria noise. The WER results are shown in Fig. 7, where plot (a)

presents the results on the data corrupted by white noise, and plot (b) presents the

results on the data corrupted by cafeteria noise. We can observe that with a more

diverse noise injection (a larger σSNR), the performances under both the two noise

conditions are generally improved. However, if σSNR is over large, the performance

might be decreased. This can be attributed to the fact that a very large σSNR results

in a significant proportion of extremely large or small SNRs, which is not consistent

with the test condition. The experimental results show that the best performance

is obtained with σSNR = 10.

5 10 15 20 25 clean
0

10

20

30

40

50

60

70

80

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(a) White noise

5 10 15 20 25 clean
0

5

10

15

20

25

30

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(b) Cafeteria noise

Figure 7 Performance of noise training with different σSNR. White and Cafeteria noises are
injected, and µSNR=15dB. For each plot, the test data are corrupted by a particular ‘known’
noise. The ‘baseline’ curves present the results of the system trained with clean speech data, as
have been presented in Table 1.

In another group of experiments, we examine performance of the noisy-trained

DNN model on data corrupted by ‘unknown noises’, i.e., noises that are different

from the ones injected in training. The results are reported in Fig. 8. We observe

quite different patterns for different noise corruptions: For most noise conditions,

we observe a similar trend as in the known noise condition. When injecting noises at

more diverse SNRs, the WER tends to be decreased, but if the noise is over diverse,

the performance may be degraded. The maximum σSNR should not exceed 0.1 in

most cases (restaurant noise, park noise, station noise). For the car noise condition,

the optimal σSNR is 0.01, and for the bus noise condition, the optimal σSNR is

1.0. The smaller optimal σSNR in the car noise condition indicates again that this

noise is significantly different from the injected white and cafeteria noises; on the

contrary, the larger optimal σSNR in the bus noise condition suggests that the bus

noise resembles the injected noises.

In general, the optimal values of σSNR in the condition of unknown noises are

much smaller than those in the condition of known noises. This is somewhat ex-

pected, since injection of over diverse/loud noises that are different from those

observed in test tends to cause acoustic mismatch between the training and test



Yin et al. Page 18 of 21

data, which may offset the improved generalization capability offered by the noisy

training. Therefore, to accomplish the most possible gains with the noisy training,

the best strategy is to involve noise types as many as possible in training so that (1)

most of the noises in test are known or partially known, i.e., similar noises involved

in training; (2) a larger σSNR can be safely employed to obtain better performance.

For a system that operates in unknown noise conditions, the most reasonable strat-

egy is to involve some typical noise types (e.g., white noise, car noise, cafeteria

noise) and choose a moderate noise corruption level, i.e., a middle-level µSNR not

larger than 15dB and a small σSNR not larger than 0.1.

6 Conclusions
We proposed a noisy training approach for DNN-based speech recognition. The anal-

ysis and experiments confirmed that by injecting a moderate level of noise in the

training data, the noise patterns can be effectively learned and the generalization

capability of the learned DNNs can be improved. Both the two advantages result in

substantial performance improvement for DNN-based ASR systems in noise condi-

tions. Particularly, we observe that the noisy training approach can effectively learn

multiple types of noises, and the performance is generally improved by involving

a proportion of clean speech. Finally, noise injection at a moderate range of SNRs

delivers further performance gains. The future work involves investigating various

noise injection approaches (e.g., weighted noise injection) and evaluating more noise

types.



Yin et al. Page 19 of 21

Acknowledgement
This research was supported by the National Science Foundation of China (NSFC)

under the project No. 61371136, and the MESTDC PhD Foundation Project No.

20130002120011. It was also supported by Sinovoice and Huilan Ltd.

Author details
1Center for Speech and Language Technology, Research Institute of Information Technology, Tsinghua University,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of

Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,

ROOM 1-303, BLDG FIT, 100084 Beijing, China. 3Department of Computer Science and Technology, Tsinghua

University, ROOM 1-303, BLDG FIT, 100084 Beijing, China. 4School of Compute Science and Technology,

Chongqing University of Posts and Telecommunications (CUPT), No.2, Chongwen Road, Nan’an district, 400065

Chong Qing, China. 5Beijing Institute of Technology, No.5, South street, Zhonggunacun, Haidian district, 100081

Beijing, China. 6GEINTRA, University of Alcalá, Spain.

References
1. Li Deng and Dong Yu, DEEP LEARNING: Methods and Applications, NOW Publishers, January 2014.

2. Hervé Bourlard and Nelson Morgan, “Hybrid HMM/ANN systems for speech recognition: Overview and new

research directions,” in Adaptive Processing of Sequences and Data Structures, pp. 389–417. Springer, 1998.

3. Hynek Hermansky, Daniel PW Ellis, and Sangita Sharma, “Tandem connectionist feature extraction for

conventional HMM systems,” in Proc. of IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2000, pp. 1635–1638.

4. George E Dahl, Dong Yu, Li Deng, and Alex Acero, “Large vocabulary continuous speech recognition with

context-dependent DBN-HMMs,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2011, pp. 4688–4691.

5. Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,

Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al., “Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups,” IEEE Signal Processing Magazine, vol. 29, no.

6, pp. 82–97, 2012.

6. A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” in Proc. of Neural

Information Processing Systems (NIPS) Workshop Deep Learning for Speech Recognition and Related

Applications, 2009.

7. George E Dahl, Dong Yu, Li Deng, and Alex Acero, “Context-dependent pre-trained deep neural networks for

large-vocabulary speech recognition,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,

no. 1, pp. 30–42, 2012.

8. Dong Yu, Li Deng, and G Dahl, “Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for

real-world speech recognition,” in Proc. of NIPS Workshop on Deep Learning and Unsupervised Feature

Learning, 2010.

9. Navdeep Jaitly, Patrick Nguyen, Andrew W Senior, and Vincent Vanhoucke, “Application of pretrained deep

neural networks to large vocabulary speech recognition,” in Proc. of Interspeech, 2012, pp. 2578–2581.

10. Tara N Sainath, Brian Kingsbury, Bhuvana Ramabhadran, Petr Fousek, Petr Novak, and Abdel-rahman

Mohamed, “Making deep belief networks effective for large vocabulary continuous speech recognition,” in

Proc. of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2011, pp. 30–35.

11. Tara N Sainath, Brian Kingsbury, Hagen Soltau, and Bhuvana Ramabhadran, “Optimization techniques to

improve training speed of deep belief networks for large speech tasks,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 21, no. 1, pp. 2267–2276, 2013.

12. Frank Seide, Gang Li, and Dong Yu, “Conversational speech transcription using context-dependent deep neural

networks,” in Proc. of Interspeech, 2011, pp. 437–440.

13. Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Feature engineering in context-dependent deep neural

networks for conversational speech transcription,” in Proc. of IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU), 2011, pp. 24–29.

14. Oriol Vinyals and Suman V Ravuri, “Comparing multilayer perceptron to deep belief network tandem features

for robust ASR,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2011, pp. 4596–4599.

15. Dong Yu and Michael L Seltzer, “Improved bottleneck features using pretrained deep neural networks,” in

Proc. of Interspeech, 2011, pp. 237–240.

16. Peter Bell, Pawel Swietojanski, and Steve Renals, “Multi-level adaptive networks in tandem and hybrid ASR

systems,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013,

pp. 6975–6979.

17. Frantisek Grezl and Petr Fousek, “Optimizing bottle-neck features for LVCSR,” in Proc. of IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 4729–4732.

18. Partha Lal and Simon King, “Cross-lingual automatic speech recognition using tandem features,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 21, no. 12, pp. 2506–2515, 2011.

19. Christian Plahl, Ralf Schlüter, and Hermann Ney, “Hierarchical bottle neck features for LVCSR,” in Proc. of

Interspeech, 2010, pp. 1197–1200.

20. Tara N Sainath, Brian Kingsbury, and Bhuvana Ramabhadran, “Auto-encoder bottleneck features using deep

belief networks,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2012, pp. 4153–4156.

21. Zoltán Tüske, Ralf Schlüter, Hermann Ney, and Martin Sundermeyer, “Context-dependent MLPs for LVCSR:

Tandem, hybrid or both?,” in Proc. of Interspeech, 2012, pp. 18–21.



Yin et al. Page 20 of 21

22. David Imseng, Petr Motlicek, Philip N Garner, and Hervé Bourlard, “Impact of deep MLP architecture on

different acoustic modeling techniques for under-resourced speech recognition,” in Proc. of IEEE Workshop on

Automatic Speech Recognition and Understanding (ASRU), 2013, pp. 332–337.

23. Jun Qi, Dong Wang, Ji Xu, and Javier Tejedor, “Bottleneck features based on gammatone frequency cepstral

coefficients,” in Proc. of Interspeech, 2013, pp. 1751–1755.

24. Dong Yu, Michael L Seltzer, Jinyu Li, Jui-Ting Huang, and Frank Seide, “Feature learning in deep neural

networks - a study on speech recognition tasks,” in Proc. of International Conference on Learning

Representations, 2013.

25. Bo Li and Khe Chai Sim, “Noise adaptive front-end normalization based on vector taylor series for deep neural

networks in robust speech recognition,” in Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2013, pp. 7408–7412.

26. Bo Li, Yu Tsao, and Khe Chai Sim, “An investigation of spectral restoration algorithms for deep neural

networks based noise robust speech recognition,” in Proc. of Interspeech, 2013, pp. 3002–3006.

27. Michael L. Seltzer, Dong Yu, and Yongqiang Wang, “An investigation of deep neural networks for noise robust

speech recognition,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 7398–7402.

28. Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol, “Extracting and composing

robust features with denoising autoencoders,” in Proc. of the 25th international conference on Machine

learning, 2008, pp. 1096–1103.

29. Andrew L Maas, Quoc V Le, Tyler M O’Neil, Oriol Vinyals, Patrick Nguyen, and Andrew Y Ng, “Recurrent

neural networks for noise reduction in robust ASR,” in Proc. of Interspeech, 2012, pp. 22–25.

30. Xiangtao Meng, Chao Liu, Zhiyong Zhang, and Dong Wang, “Noisy training for deep neural networks,” in

Proc. of ChinaSIP 2014, 2014, pp. 16–20.

31. Guozhong An, “The effects of adding noise during backpropagation training on a generalization performance,”

Neural Computation, vol. 8, no. 3, pp. 643–674, 1996.

32. Yves Grandvalet and Stéphane Canu, “Comments on ’noise injection into inputs in back propagation

learning’,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 4, pp. 678–681, 1995.

33. Chris M Bishop, “Training with noise is equivalent to tikhonov regularization,” Neural computation, vol. 7, no.

1, pp. 108–116, 1995.

34. Yves Grandvalet, Stéphane Canu, and Stéphane Boucheron, “Noise injection: Theoretical prospects,” Neural

Computation, vol. 9, no. 5, pp. 1093–1108, 1997.

35. Jocelyn Sietsma and Robert JF Dow, “Neural net pruning-why and how,” in Proc. of IEEE International

Conference on Neural Networks, 1988, pp. 325–333.

36. Kiyotoshi Matsuoka, “Noise injection into inputs in back-propagation learning,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 22, no. 3, pp. 436–440, 1992.

37. Russell Reed, RJ Marks, Seho Oh, et al., “Similarities of error regularization, sigmoid gain scaling, target

smoothing, and training with jitter,” IEEE Transactions on Neural Networks, vol. 6, no. 3, pp. 529–538, 1995.



Yin et al. Page 21 of 21

5 10 15 20 25 clean
4

4.5

5

5.5

6

6.5

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(a) Car noise test

5 10 15 20 25 clean
4

5

6

7

8

9

10

11

12

13

14

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(b) Bus noise test

5 10 15 20 25 clean
0

5

10

15

20

25

30

35

40

45

50

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(c) Restaurant noise test

5 10 15 20 25 clean
4

6

8

10

12

14

16

18

20

22

24

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(d) Park noise test

5 10 15 20 25 clean
0

5

10

15

20

25

30

35

Test SNR (db)

W
E

R
%

 

 
baseline
σ=0.01
σ=0.1
σ=1.0
σ=10
σ=50

(e) Station noise test

Figure 8 Performance of noise training with different σSNR. White and Cafeteria noises are
injected, and µSNR=15dB. For each plot, the test data are corrupted by a particular ‘unknown’
noise. The ‘baseline’ curves present the results of the system trained with clean speech data, as
have been presented in Table 1.


