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Abstract

Probabilistic linear discriminant analysis (PLDA) is among the most popular
methods that accompany the i-vector model to deliver state-of-the-art
performance for speaker recognition. A potential problem of the PLDA model,
however, is that it essentially assumes strong Gaussian distributions over i-vectors
as well as speaker mean vectors, and the objective function is not directly related
to the goal of the task, e.g., discriminating true speakers and imposters.

We propose a max-margin metric learning (MMML) approach to solve the
problem. It learns a linear transform with the criterion that target trials and
imposter trials are discriminated from each other by a large margin. Experiments
show that the MMML and PLDA models have respective advantages under
different training/test conditions. With the number of utterances for each
speaker increasing, the MMML has an advantage over PLDA model in the
beginning, and then the PLDA model surpasses the MMML model when more
utterances are available. On the other hand, as the number of speakers increases,
MMML tends to deliver better performance.
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1 Introduction
The i-vector model represents the state of the art for modern speaker recognition [1,

2]. By this model, a speech segment is represented as a low-dimensional continuous

vector (i-vector), so that speaker recognition (and other tasks) can be performed

based on the vector representations.

A particular property of the i-vector model is that both the speaker and session

variances are embedded in a single low-dimensional subspace. This is an obvious

advantage since more speaker-related information is retained compared to other

factorization models, e.g., JFA [1]; however, since the speaker-related information

is buried under others, raw i-vectors are not sufficiently discriminative with re-

spect to speakers. In order to improve the discriminative capability of i-vectors for

speaker recognition, various discriminative models have been proposed, including

within-class covariance normalization (WCCN) [3], nuisance attribute projection

(NAP) [4], linear discriminant analysis (LDA) [5], and its Bayesian counterpart,

probabilistic linear discriminant analysis (PLDA) [6].

Among these models, PLDA plus length normalization is regarded to be the most

effective and delivers state-of-the-art performance. The success of this model is

largely attributed to two factors: one is the training objective function that reduces

the intra-speaker variation while enlarges inter-speaker variation, and the other is
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the Gaussian prior that assumes over the speaker mean vectors, which improves

robustness on speakers with little or no training data.

These two factors, however, are also the two main shortcomings of the PLDA

model. As for the objective function, although it encourages discrimination among

speakers, the discrimination is based on Euclidian distance, which is inconsistent

with the normally used cosine distance that has been demonstrated to be more effec-

tive.[1] Additionally, our task in speaker recognition is to discriminate true speakers

and imposters, which is a binary decision, instead of the multi-class discrimination

in PLDA training. As for the Gaussian assumption, it is often over strong and can

not be held in practice, leading to a less representative model.

Some researchers have noticed these problems. For example, to go beyond the

Gaussian assumption, Kenny proposed a heavy-tailed PLDA [7] which assumes a

non-Gaussian prior over the speaker mean vector. Garcia-Romero et al. found that

length normalization can compensate for the non-Gaussian effect and boost per-

formance of Gaussian PLDA to the level of the heavy-tailed PLDA [8]. Burget,

Cumani and colleagues proposed a pair-wised discriminative model that discrimi-

nates true speakers and imposters [9, 10]. In their approach, the model accepts a

pair of i-vectors and predicts the probability that they belong to the same speaker.

The input features of the model are derived from the i-vector pairs according to a

form derived from the PLDA score function (further generalized to any symmet-

ric score functions in [10]), and the model is trained on i-vector pairs that have

been labelled as identical or different speakers. A particular shortcoming of this

approach is that the feature expansion is highly complex. To solve this problem,

a partial discriminative training approach was proposed in [11], which optimizes

the discriminative model on a subspace and does not require any feature expan-

sion. In [12], we proposed a discriminative approach based on deep neural networks

(DNN), which holds the same idea as the pair-wised training, while the features are

defined manually.

Although promising, the discriminative approaches mentioned above seem rather

complex. We hope a model as simple as LDA and the inference as simple as a

cosine computation. This paper presents a max-margin metric learning (MMML)

approach, which is a simple linear projection trained with the objective of discrim-

inating true speakers and imposters directly. Once the projection has been learned,

simple cosine distance is sufficient to conduct the scoring. This approach belongs

to the simplest metric learning which has been studied for decades in machine

learning [13, 14], though it has not been extensively studied in speaker recognition.

Besides, we hope to investigate the respective advantages of MMML and PLDA

under different training conditions, and try to identify the conditions that each

method is mostly suitable.

The rest of this paper is organized as follows. Section 2 discusses some related

work, Section 3 presents the max-margin learning method. The experiments are

presented in Section 4, and Section 5 concludes the paper.

[1]This inconsistency is more serious for the LDA model for which cosine distance

is used in evaluation. For PLDA, the training and evaluation are with the same

Euclidian distance, though cosine distance is potentially more suitable.
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2 Related work
Some of the related works, particularly the pair-wised discriminative model, have

been discussed in the previous section. This section presents some researches on

metric learning for speaker recognition, which are related to our study more directly.

A representative work proposed in [15] employs neighborhood component analysis

(NCA) to learn a projection matrix that minimizes the average leave-one-out k-

nearest neighbor classification error. Our model differs from the NCA approach in

that we use max-margin as the training objective and cosine distance as the distance

measure, which is more suitable for speaker recognition.

The cosine similarity large margin nearest neighborhood (CSLMNN) model pro-

posed in [16] is more relevant to our proposal. The authors formulated the training

task as a semidefinite program (SDP) [17] which moves i-vectors of the same speaker

closer by maximizing the cosine distance among them, while penalizing the criterion

of separating the data of different speakers by a large margin. Our approach uses

a similar objective function, though employs a simpler solver based on stochastic

gradient descendent (SGD), which supports mini-batch learning and accommodates

large scale optimization.

3 Max-margin Metric learning
This section presents the max-margin metric learning for speaker recognition. Met-

ric learning has been studied for decades. The simplest form is to learn a linear

projection M so that the distance among the projected data is more suitable for

the task in hand [13]. For speaker recognition, the most popular used distance met-

ric is the cosine distance and the goal is to discriminate true speakers and imposters,

we therefore optimize M to make the projected i-vectors more discriminative for

genuine and counterfeit speakers measured by cosine distance.

Formally, the cosine distance between two i-vectors w1 and w2 is given as follows:

d(w1, w2) =
< w1,w2 >√
||w1||||w2||

. (1)

where < ·, · > denotes inner product, and || · || is the l-2 norm. Further define a con-

trastive triple (w,w+, w−) where the i-vectors w and w+ are from the same speaker,

and w and w− are from different speakers. Letting S denote all the contrastive

triples in a development set, we can define the max-margin objective function that

encourages i-vectors of the same speaker moving close while penalizing i-vectors

from different speakers, given by:

L(M) =
∑

(w,w+,w−)∈S

max{0, δ − d(Mw,Mw+) + d(Mw,Mw−)} (2)

where δ is a hyperparameter that determines the margin. Note that minimizing this

function results in maximizing the margin between i-vectors of the same speaker

and different speakers.

Note that optimizing L(M) directly is often infeasible, because the size of S is

exponentially large. We choose the SGD algorithm to solve the problem, where
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the training is conducted in a mini-batch style. In a mini-batch t, a number of

contrastive triples are sampled from S, and these triples are used to calculate the

gradient ∂L
∂M . The projection M is then updated with this gradient as follows:

M t = M t−1 + ε
∂L
∂M

(3)

where M t is the projection matrix at mini-batch t, and ε is a learning rate. This

learning iterates until convergence is obtained. In this study, the Theano pack-

age [18] was used to implement the SGD training.

Once the matrix M has been learned from the development data, an i-vector w

can be projected to its image Mw in the projection space, where true speakers and

imposters are more easily to be discriminated, according to the training objective.

Note that the max-margin metric learning is based on cosine distance, which means

that the simple cosine distance is the theoretically correct choice when scoring trials

in the projection space. This is a big advantage compared to PLDA, which requires

complex matrix computation.
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Figure 1 Illustration of the improved discrimination with the max-margin metric learning.
Each speaker is represented by a shape and a particular color. After applying the projection
that is learned from data, speakers that congest together in the original i-vector space become
separable.

Fig.1 illustrates the concept of the max-margin metric learning for speaker recog-

nition. The i-vectors from the same speaker are labeled as the same color and shape.

In the input space, i-vectors of all the speakers are congested together. After ap-

plying the learned projection, i-vectors of the same speaker are moved closer, while

those of different speakers are moved apart. Note that there is a margin measured

by angle θij between a speaker pair i and j.

4 Experiments
This section first presents the data used and the experimental setup, and then

reports the results in terms of equal error rate (EER) and DET curves.

4.1 Database

In order to ensure the effectiveness and robustness of the proposed MMML method,

two databases Fisher telephone speech database(Fisher) and NIST 2005 speaker

recognition evaluation(SRE05) are used as the development sets to train the i-vector

systems. For the evaluation, NIST 2008 speaker recognition evaluation(SRE08) is
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Table 1 Evaluation conditions reproduced from [19]

Trial Number
condition of trials Description

c1 19,776 only interview speech in training and test
c2 996 interview speech from the same microphone type in training and test
c3 18,780 interview speech from different microphones types in training and test
c4 6,693 interview training speech and telephone test speech
c5 4,408 telephone training speech and noninterview microphone test speech
c6 23,385 only telephone speech in training and test
c7 11,146 English language telephone speech in training and test

c8 5,233
only English language telephone speech spoken by a native U.S. English
speaker in training and test

Total 59,343 All trials in evaluation set

used to evaluate the proposed method. Note that all the data are recordings of

females.

• Development sets:

• Fisher: 7196 female speakers with 13287 utterances are used to train the i-

vector, LDA and PLDA models. The same data is also used to conduct the

metric learning.

• SRE05: 476 female speakers with 6677 utterances are used as the development

set similar as Fisher.

• Evaluation set:

• SRE08: The short2-short3 condition of SRE08 [19] is used as the evaluation

set. The evaluation set consists of 1997 female enrollment utterances and 3858

test utterances, and it is based on the pair-wised 59343 trials, including 12159

target trials and 47184 imposter trials. Table 1 presents the test conditions,

produced from [19]

4.2 Experimental setup

We largely follow the Kaldi SRE08 recipe to conduct the experiments. The acous-

tic feature is 19-dimensional Mel frequency cepstral coefficients (MFCCs) together

with the log energy. The first and second order derivatives are augmented to the

static feature, resulting in 60-dimensional feature vectors. The UBM involves 2048

Gaussian components and was trained with about 8000 female utterances randomly

selected from either the Fisher or SRE05 database. The dimensions of the i-vector

space and the LDA projection space are set to 400 and 150, respectively. For the

metric learning, utterances either in the Fisher or SRE05 database are sampled

randomly to build the contrastive triples and are used to train the projection ma-

trix. In order to compare with the LDA model, the dimension of MMML projection

space is chosen as 150. The margin δ is set to 1, the mini-batch size is set to 100,

and the learning rate ε is set to 0.2. For each each i-vector w, 15 positive w+s and

negative w−s are sampled to construct 15 contrastive triples. The value 15 is the

optimal choice in our experiments. Note that a larger number of samples slows the

training down, but resulted in more stable MMML models in our experiments.

4.3 Basic results

Two group of experiments are conducted with the two development sets (Fisher

and SRE05 ) respectively. We first present the basic results obtained with various

discriminative models: raw i-vectors with cosine scoring (Cosine), LDA, PLDA,
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max-margin metric learning (MMML). The test is based on the NIST SRE 2008

core task, which is divided into 8 test conditions according to the channel, language

and accent [19]. The EER results are reported in Table 2 and Table 3.

It can be observed that there is significant discrepancy on the results of two groups

of experiments. For the results in Table 2 where the development set is the Fisher

corpus, the proposed MMML approach significantly improves the discriminative

capability of raw i-vectors, and it outperforms both LDA and PLDA in condition

1-4 (which takes the major proportion of the test data). In condition 5-8, the PLDA

wins the competition. Nevertheless, since condition 1-4 takes a large proportion of

the data, the MMML approach gets the best overall performance.

For the results in Table 3 where the development set is the SRE05 corpus, the

PLDA is overwhelmingly superior to the purely discriminative MMML. Certainly,

the proposed MMML still contributes: it outperforms the traditional cosine scoring

approach in a significant way. In condition 6-8, MMML even outperforms LDA.

Condition Cosine LDA PLDA MMML
C1 28.65 22.34 19.63 15.63
C2 4.78 1.49 1.79 1.19
C3 28.60 22.29 19.96 16.18
C4 19.67 12.61 15.47 12.61
C5 20.79 14.18 11.66 12.98
C6 11.20 10.42 8.31 10.92
C7 7.35 6.08 4.31 6.34
C8 7.37 5.53 4.74 5.53
Overall 24.65 20.58 19.30 16.02

Table 2 EER results on NIST SRE 2008 core test under the Fisher Development set. The best
results are shown in bold face for each condition.

Condition Cosine LDA PLDA MMML
C1 23.84 13.69 13.59 19.54
C2 5.97 2.09 1.49 3.88
C3 23.06 13.28 13.94 19.94
C4 19.67 13.81 15.32 16.82
C5 22.12 15.50 14.42 22.24
C6 14.02 11.36 9.20 10.70
C7 11.41 8.49 6.21 7.86
C8 12.63 10.00 6.84 8.16
Overall 22.02 15.94 15.95 18.05

Table 3 EER results on NIST SRE 2008 core test under the SRE05 Development set. The best
results are shown in bold face for each condition.

4.4 Experimental validation

From the basic experiments, we observe that the three discriminative methods

(LDA/PLDA/MMML) behave very differently when the models are developed

based on different data (Fisher and SRE05 ). To discover the root of the differ-

ence, we analyze the two databases thoroughly and found that a clear difference

between them is that the Fisher database consists of more speakers and each speaker

just contains about 1-2 utterances, while the SRE05 database has less speakers but

each speaker contains more utterances (On average, each speaker has about 13

utterances).

In order to verify if this discrepancy on data profiles (number of speakers and

number of utterances per speaker) caused the different comparative advantages of

MMML compared to other models, we conduct a serious of experiments in this

section.
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4.4.1 Utterance-sensitive test

In this experiment, the number of speakers is fixed and the number of utterances per

speaker varies from 2 to 5. The SRE05 database is used as the development set to

train the LDA/PLDA/MMML models (Fisher does not contain such a large number

of per-speaker utterances). For each speaker, the required n utterances are randomly

selected. According to different n, four development datasets are constructed as

shown Table 4.

Training Sets SRE05-2 SRE05-3 SRE05-4 SRE05-5
Speakers 476 476 476 476
utterances 950 1404 1841 2271

Table 4 Statistics of Utterance-sensitive development datasets.

The experiment uses the UBM model and i-vector model previously trained using

the entire SER05 database (used already to produce the results in Table 3). The four

development sets are used to train the LDA, PLDA and MMML models respectively.

The results are presented in Fig. 2 and Fig. 3.

Figure 2 Performance of NIST SRE 2008 core test with four discriminative model. Each line
is represented by each test condition. For the left figure, two utterances are randomly selected
from each speaker in SRE05. For the right figure, three utterances are randomly selected
from each speaker in SRE05.

It can be seen that with the number of per-speaker utterances increasing, the

performance with the three discriminative model (LDA, PLDA and MMML) are

all improved, however the contribution of extra utterances is significantly different.

Focusing on the test condition ‘total’, we find that with 2 utterance per speaker, all

the discriminative models are not effective. With 3 utterances, all the discriminative

models become effective and outperform the baseline cosine scoring, and MMML

shows clear advantage compared to LDA and PLDA. With more utterances, the

improvement for MMML and LDA is marginal, while PLDA still benefits from the

extra data and outperforms MMML.

This observation are true for individual test conditions: with more utterances, the

improvement with PLDA is much more significant than LDA and MMML. This

means PLDA is ‘utterance-sensitive’. The difference between LDA and MMML is

not significant.
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Figure 3 Performance of NIST SRE 2008 core test with four discriminative model. For the
left figure, four utterances are randomly selected from each speaker in SRE05. For the right
figure, five utterances are randomly selected from each speaker in SRE05.

Figure 4 Utterance-sensitive test based on Cosine and LDA models.

Moreover, from the results with SRE05-2 and SRE05-3, we can see the advan-

tage of MMML mostly exhibits when the EERs are high, i.e., condition 1, 3, 4,

5. Another condition that MMML wins is condition 2. All these conditions share

the same property: there are some channel mismatch between model training and

enrollment/test. Note that the SRE05 data are mostly telephone speech, while the

enrollment and/or test data in all the above conditions involve microphone speech.

This suggests that the probable reason for the disadvantage of PLDA we observed

in this experiment is two-fold: limited per-speaker utterances for model training,

and channel mismatch between model training and enrollment/test. This is rea-

sonable since PLDA is a hierarchical linear Gaussian model and requires sufficient

data to estimate model parameters correctly. With few utterances, most of them are

telephone speech, and so the variation can not be well modeled in the population

level (priors for speaker means) as well as speaker level (inter-session variation).
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Figure 5 Utterance-sensitive test based on PLDA and MMML models.

This leads to bad performance in conditions where the enrollment/test utterances

involve microphone speech. With more data available, microphone data are more

sampled and the channel variation is addressed by PLDA.

4.4.2 Speaker-sensitive test

In this experiment, we fix the number of utterances per speaker and change the

number of speakers in the development set. Thanks to the large number of speakers

of the Fisher database, we can use it to conduct the experiments. Specifically, we

randomly select n speakers from the Fisher database, where 99% speakers just have

1 to 3 utterances. Four datasets are constructed according to n, as shown in Table 5.

Note that larger n leads to more utterances in total, but less utterances per speaker.

Training Sets Fisher-1 Fisher-2 Fisher-3 Fisher-4
Speakers 1867 2396 4803 7196
utterances 4557 4429 8859 13287

Table 5 Parameters of speaker-directed condition. Note that in order to compare with the results
from SRE05-2 and SRE05-3, we randomly selected 1867 speakers from the Fisher and each
speaker contains 2 or 3 utterances. Besides, Fisher-2, Fisher-3, Fisher-4 are selected according
to the utterance number.

The UBM and i-vector models used here are trained with the Fisher database and

are the same as those used in Table 2. The four datasets are used to train the LDA,

PLDA and MMML models. The EER results are presented in Fig 6 and Fig 7.

From the test condition ‘total’, it can be seen that the advantage of MMML is more

clear compared to PLDA/LDA with more speakers involved in model training. More

speakers seem does not change the performance of PLDA, but it provides significant

performance on MMML. (We suspect that this advantage may be caused by the

less per-speaker utterances with more speakers?????)

In more details, MMML outperforms PLDA in condition 1-4, while in condition

5-8 the PLDA wins. This results are consistent to the results in 2, except condition

5 for which MMML performs better better than PLDA in the utterance-sensitive

test. A possible reason is that the Fisher database is purely telephone....
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Figure 6 Performance of NIST SRE 2008 core test with four discriminative model. For the
left figure, Fisher-1 as the training set is used for LDA, PLDA and MMML training. For
the right figure, Fisher-2 is used as the training set.

4.5 Combination

In this section, two combination approaches have been proposed.

• Tandem composition

We note that both MMML and LDA learn a linear projection, though they are

based on different learning criteria: LDA uses Fisher discriminant while MMML

uses max-margin. The results in Section 4.3 and Section 4.4 show that MMML

and LDA have respective advantages. An interesting question is whether the two

criteria can be composed in a tandem way. The results are shown in Table 6 and

Table 7, where the system ‘LDA+MMML’ involves a 400 × 150 dimensional LDA

projection followed by a 150×150 dimensional MMML projection, while the system

‘MMML+LDA’ involves a 400 × 150 dimensional MMML and a 150 × 150 dimen-

sional LDA. From these results, we find that the last projection is the most impor-

tant. For example, in Table 6, LDA is inferior to MMML and the ‘MMML+LDA’ has

the same performance as LDA. Meanwhile, the results of ‘LDA+MMML’ is analo-

gous to MMML. It seems that the tandem composition of the two linear projection

methods does not dig out more discriminative information. However, the ‘MMML-

PLDA’ tandem composition achieves fairly good performance. We attribute it to

...

Condition LDA PLDA MMML MMML + LDA LDA + MMML MMML + PLDA
C1 22.34 19.63 15.63 21.39 16.45 13.13
C2 1.49 1.79 1.19 1.79 1.19 0.90
C3 22.29 19.96 16.18 21.38 17.07 13.09
C4 12.61 15.47 12.61 13.06 13.21 11.11
C5 14.18 11.66 12.98 12.74 13.10 10.34
C6 10.42 8.31 10.92 10.31 11.03 9.81
C7 6.08 4.31 6.34 6.21 6.21 5.20
C8 5.53 4.74 5.53 6.05 5.53 4.47
Overall 20.58 19.30 16.02 19.85 16.27 15.86

Table 6 EER results with tandem composition under the Fisher Development set. The best
results are shown in bold face for each condition.
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Figure 7 Performance of NIST SRE 2008 core test with four discriminative model. For the
left figure, Fisher-3 as the training set is used for LDA, PLDA and MMML training. For
the right figure, Fisher-4 is used as the training set.

Figure 8 Speaker-sensitive test based on Cosine and LDA models.

The DET curves on the overall test condition with the six models are presented

in Fig 10. It is clearly observed that the ‘MMML+PLDA’ approach outperforms

the others.

• Score fusion

The LDA/PLDA model and MMML model are complementary: LDA/PLDA

are generative models and so better generalizable to rare conditions where little

training data are available, whereas MMML is purely discriminative and is su-

perior for matched conditions. Combining these two types of models may offer

additional gains. We experimented with a simple score fusion approach that lin-

early interpolates the scores from LDA/PLDA and MMML. The fusion function is

αsmmml + (1− α)slda/plda, where smmml and slda/plda are scores from the MMML

and LDA/PLDA systems respectively, and α is the interpolation factor. The results

are presented in Figure 11 and Figure 12.
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Figure 9 Speaker-sensitive test based on PLDA and MMML models.

Condition LDA PLDA MMML MMML + LDA LDA + MMML MMML + PLDA
C1 13.69 13.59 19.54 14.32 17.19 11.61
C2 2.09 1.49 3.88 2.39 3.28 2.39
C3 13.28 13.94 19.94 13.80 17.45 11.60
C4 13.81 15.32 16.82 14.71 16.67 12.61
C5 15.50 14.42 22.24 14.54 20.31 11.78
C6 11.36 9.20 10.70 10.98 10.92 9.53
C7 8.49 6.21 7.86 7.73 7.73 6.97
C8 10.00 6.84 8.16 9.21 8.16 8.16
Overall 15.94 15.95 18.05 15.58 17.47 12.62

Table 7 EER results with tandem composition under the SRE05 Development set. The best
results are shown in bold face for each condition.

We observe that the score fusion leads to consistently better performance than

the original LDA and PLDA systems. Interestingly, the performance on condition

5-8 is also improved, although the MMML approach does not work well individ-

ually in these conditions. If the interpolation factor α had been tuned for each

condition separately, the fusion system would obtain the best performance in all

the conditions.

5 Conclusions
In this paper, we proposed a max-margin metric learning approach for speaker

recognition. This approach is a simple linear transform that is trained with the cri-

terion of max-margin between true speakers and imposters based on cosine distance.

Besides, from both ‘utterance-directed’ condition and ‘speaker-directed’ condition,

we explored the performance tendency between MMML, LDA and PLDA and ex-

plicitly interpreted the application scenarios of each method. Moreover, two system

combination schemes were proposed to further improve recognition performance.

Future work will investigate metric learning with non-linear transforms, and study

better approaches to combining PLDA and MMML.
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Figure 10 The DET curves on the NIST SRE 2008 overall test condition under the Fisher or
SRE05 development set.

Figure 11 EER results with score fusion under the Fisher development set.
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