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ABSTRACT

In this paper, we consider state-space models where the latent pro-
cesses represent correlated mixtures of fractional Gaussian processes
embedded in white Gaussian noises. The observed data are nonlin-
ear functions of the latent states. The fractional Gaussian processes
have interesting properties including long-memory, self-similarity
and scale-invariance, and thus, are of interest for building models
in finance and econometrics. We propose sequential Monte Carlo
(SMC) methods for inference of the latent processes where each
method is based on different assumptions about the parameters of
the state-space model. The methods are extensively evaluated via
simulations of the popular stochastic volatility model.

Index Terms— Sequential Monte Carlo, particle filtering, oper-
ator fractional Gaussian process, time-series, state-space models.

1. INTRODUCTION

We study the inference of latent correlated time-series that exhibit
long-memory and self-similarity properties. We investigate state-
space models where the latent states represent correlated mixtures
of independent fractional Gaussian processes (fGps) embedded in
white Gaussian noise and the observed data are nonlinear functions
of the states.

State-space models provide a very flexible framework and there-
fore have been widely used in many signal processing applications,
such as speech processing, communications, finance, and neuro-
science [1, 2]. Motivated by applications in finance and econo-
metrics [3], we are particularly interested in inference of time-
series observed through nonlinear functions, commonly used in the
analysis of asset returns [4, 5].

The paradigm of self-similarity and scale-invariance has re-
cently attracted a lot of attention within the finance community due
to the multi-scale nature of econometric data, e.g., data that repre-
sent second, minute or daily trading. For capturing these features,
both fractal-system analysis [6] and self-similar processes [7] have
been popularized. However, econometric data are often multivariate
and, thus, the concept of scale invariance needs to be generalized.
To that end, a recently suggested approach is based on the use of
operator fractional Gaussian processes (OfGps) [8, 9], which are
multivariate Gaussian self-similar processes. The approach to mod-
eling multivariate self-similar and scale-invariant data is based on
linearly mixing a set of independent fractional Gaussian processes,
where each of them may have a different Hurst parameter. The Hurst
parameter is used, amongst others, as a measure of the long-term
memory of time-series. The stationarity, self-similarity and other
properties of operator fractional processes have been studied in [10]

and references therein. The fGps [11] have already been widely used
to analyze a myriad of signals and systems [12], and in particular,
finance data [13, 14, 15, 16].

In this paper, we propose a flexible approach for studying OfGps
embedded in noise and observed through nonlinear functions. Our
goal is to provide a generic framework for inference of correlated
latent long-memory data. We consider settings with different prior
knowledge about the model parameters, which lead to non-Gaussian
densities. Due to the presence of nonlinearities and non-Gaussiani-
ties, we devise Sequential Monte Carlo (SMC) methods, also known
as Particle Filters (PFs) [17, 18, 19] for tracking the latent processes.
We build upon our previous work [20] on the inference of a latent
fGp, by extending it to accommodate the correlation of several long-
memory time-series, i.e., by constructing an OfGp. The main con-
tribution of this paper is the novel suite of SMC methods devised for
inference of correlated mixtures of latent long-memory processes.

The paper is organized as follows. In the next section, we formu-
late the problem. The proposed methodology is presented in Section
3. In Section 4, we demonstrate the performance of the methods on
data simulated from the stochastic volatility model. The last section
has our concluding remarks.

2. PROBLEM FORMULATION

We are interested in making inference of correlated latent processes
observed through nonlinear functions. Specifically, we consider
state-space models that are described by a hidden OfGp embedded
in white Gaussian noise and a nonlinear observation equation.

Let ut ∈ Rdu be a vector of independent fGps, each with a
Hurst parameter Hi, variance σ2

i and the following autocovariance
function [21]:

γui(τ) =
σ2
i

2
ρui(τ) =

σ2
i

2

[
|τ − 1|2Hi − 2 |τ |2Hi + |τ + 1|2Hi

]
.

For 1
2
< Hi < 1, i = 1, · · · , du, the process has long-range depen-

dence; and, for Hi = 0.5, it is uncorrelated.
Let xt ∈ Rdx be a set of latent correlated processes (i.e., OfGp)

and yt ∈ Rdy the observed vector at time t. We mathematically
represent the hierarchical model of interest as follows:

ui,t ∼ fGp(Hi, σ2
i ), i = 1, · · · , du,

xt = Aut + wt,

yt = h(xt, vt),

(1)

where t = 1, 2, · · · ; wt ∈ Rdx is a zero mean Gaussian vector with
covariance matrix Cw (we write wt ∼ N (0, Cw)); A ∈ Rdx×du is
a mixing matrix; vt ∈ Rdv denotes an independent white Gaussian
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noise; and h(xt, vt) : Rdx × Rdv → Rdy , is some nonlinear func-
tion. We point out that we do not restrict the form of the function
h(·, ·), but we require that the likelihood function f(yt|xt) obtained
from the function and the density of vt be known up to a proportion-
ality constant and be computable.

Given a set of observations y1:t ≡ {y1, y2, · · · , yt}, we want to
sequentially estimate the posterior distribution of xt, f(xt|y1:t). To
do so, we need to proceed sequentially, i.e., for a new observation
yt+1, we update f(xt|y1:t) to a new distribution f(xt+1|y1:t+1).
This density is derived using the Bayes’ rule as follows:

f(xt+1|y1:t+1) ∝ f(yt+1|xt+1)

∫
f(xt+1|x1:t)f(x1:t|y1:t)dx1:t.

(2)
On the one hand, the challenge is to estimate f(xt+1|x1:t) for

the state-space model as in (1), given its hierarchical nature and the
properties of the latent OfGp. On the other, the analytical solution to
the integral in (2) is only possible in a very limited number of cases,
those with Gaussian noises and linear functions, which is the cele-
brated Kalman filter [22]. However, we do not restrict ourselves to
such settings and thus, resort to SMC methods, widely popular since
the seminal publication of [23]. When dealing with nonlinear/non-
Gaussian state-space models, these methods approximate the densi-
ties of interest by discrete random measures of the form

f(xt) ≈
M∑
m=1

w
(m)
t δ(xt − x(m)

t ), (3)

where x(m)
t are particles drawn from a proposal distribution, w(m)

t

are the weights associated to the particles, and M is the number of
particles. Because sampling from the optimal proposal distribution
is intractable for the considered model, we resort to the commonly
used transition density of the state.

3. THE PROPOSED METHOD

Here we provide a Bayesian derivation of the state transition densi-
ties under different assumptions about the variances of the fGps and
the mixing parameters of the OfGp. The derived densities play a
central role in the application of the proposed SMC methods.

3.1. Bayesian Analysis

We are interested in the joint filtering density of both latent states in
(1), i.e., f(ut, xt|y1:t) and thus, we need to derive the joint transition
density f(ut+1, xt+1|u1:t, x1:t). Due to the hierarchical structure of
the model, we can factorize it as

f(ut+1, xt+1|u1:t, x1:t) = f(ut+1|u1:t)f(xt+1|ut+1). (4)

The transition density of the fGps given the parameters Hi and σ2
i ,

follows a multivariate Gaussian f(ut+1|u1:t, σ
2
i ) = N (µt+1, Ct+1)

[20], with parameters

µt+1 =
(
µ1,t+1 · · · µdu,t+1

)>
,

Ct+1 =


σ2
1,t+1 0 · · ·
0 σ2

2,t+1 · · ·
...

...
. . .

0 0 σ2
du,t+1

 ,
(5)

where we can write{
µi,t+1 = ci,t+1C

−1
i,t ui,1:t ,

σ2
i,t+1 = σ2

i

(
ρui(0)− ci,tC

−1
i,t c
>
i,t

)
,

(6)

with

ci,t = ( ρui
(1) ρui

(2) ··· ρui
(t−1) ρui

(t) ) ,

Ci,t =


ρui

(0) ρui
(1) ρui

(2) ··· ρui
(t−2) ρui

(t−1)

ρui
(1) ρui

(0) ρui
(1) ··· ρui

(t−3) ρui
(t−2)

...
...

...
. . .

...
...

ρui
(t−3) ρui

(t−4) ρui
(t−5) ··· ρui

(1) ρui
(2)

ρui
(t−2) ρui

(t−3) ρui
(t−4) ··· ρui

(0) ρui
(1)

ρui
(t−1) ρui

(t−2) ρui
(t−3) ··· ρui

(1) ρui
(0)

 ,

(7)

and ρui(τ) = 1
2

[
|τ − 1|2Hi − 2 |τ |2Hi + |τ + 1|2Hi

]
. Note that

the fGp is not Markovian because the whole past history ui,1:t is
required for the computation of the sufficient statistics in (6).

If the variances σ2
i are unknown, we can marginalize them and

derive alternative expressions, given by du location-scale Student’s
t-distributions [24] as follows:

f(ui,t+1|ui,1:t) = µi,t+1 + li,t+1T (νt+1),

with


νt+1 = ν0 + t,

µi,t+1 = ci,tC
−1
i,t u1:t,

σ2
i,t =

ν0σ0+ui,1:tC
−1
i,t u

>
i,1:t

νt
,

l2i,t+1 = σ2
i

(
ρui(0)− ci,tC

−1
i,t c
>
i,t

)
.

(8)

We note that the underlying model contains the unknown Hurst
parameters Hi. Most popular methods that estimate the His assume
direct observation of xt [25, 26], which is not the case here. We point
out that since the His are static parameters, if they are unknown, the
applied SMC may have problems in dealing with them [27]. Further-
more, the approaches from the literature may (a) break the self-sim-
ilarity and stationarity properties of the fGp, and (b) hinder the con-
vergence of the SMC method. A straightforward approach to dealing
with the unknown His is by way of a bank of parallel SMCs with a
subsequent model selection scheme [20], which we adopt here.

From the model in (1), we deduce that the conditional density
of xt+1 given ut+1 is a multivariate Gaussian f(xt+1|ut+1) =
N (Aut+1, Cw), for known A and Cw. Nevertheless, it is unreal-
istic to know their true values in practice and thus, we marginal-
ize them out. Consider the estimate of the mixing matrix at time t
Ât = XtU

>
t (UtU

>
t )
−1, where the following historical data matri-

ces have been defined [28]:{
Xt = [x1x2 · · ·xt] ∈ Rdx×t,
Ut = [u1u2 · · ·ut] ∈ Rdu×t.

(9)

Instead of using point estimates, we integrate out the unknown
A and Cw to derive the predictive density of xt+1, given ut+1, Xt

and Ut, by following [29]. The resulting density is a multivariate
t-distribution

f(xt+1|ut+1,Xt,Ut) = T (νt+1, µt+1, Rt+1), (10)

with νt+1 degrees of freedom, location parameter µt+1 ∈ Rdx and
scale matrix Rt+1 ∈ Rdx×dx [24], computed by

νt+1 = t− dx − du + 1,

µt+1 = Âtut+1,

Rt+1 =
(Xt−ÂtUt)(Xt−ÂtUt)

>

ν(1−u>t+1(Ut+1U
>
t+1)

−1ut+1)
.

(11)
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Note that this density does not depend on any of the parameters A
and Cw. Now we have the two main transition distributions of the
hidden states that are needed for devising our particle filter. This is
explained next.

3.2. Particle Filter

We now present SMC methods for joint filtering of the latent states
ut and xt. Consider that at time instant t the discrete random mea-
sure is given by

χt =
{
u
(mu)
1:t , x

(mu)
1:t , w

(mu)
t

}
, where mu = 1, · · · ,Mu.

Upon reception of a new observation at time instant t + 1, the
algorithm proceeds in ways that depend on the available knowledge
of the model parameters. The details are as follows:

1. Compute the new correlation values for each latent fGp

ρui(τ) =
1

2

[
(τ + 1)2Hi − 2τ2Hi + (τ − 1)2Hi

]
.

2. Propagate the latent fGp by conditioning on the available re-
sampled streams u(mu)

1:t .

• If σ2
i is known,

u
(mu)
i,t+1 ∼ f(u

(mu)
i,t+1|u

(mu)
i,1:t ) = N

(
µ
(mu)
i,t+1, σ

2
i,t+1

)
,

where

{
µ
(mu)
i,t+1 = ci,t+1C

−1
i,t u

(mu)
i,1:t ,

σ2
i,t+1 = σ2

i

(
ρui(0)− ci,tC

−1
i,t c
>
i,t

)
.

• If σ2
i is unknown,

u
(mu)
i,t+1 ∼ f(u

(mu)
i,t+1|u

(mu)
i,1:t ) = µ

(mu)
i,t+1 + l

(mu)
i,t+1T (νt+1),

where


νt+1 = ν0 + t,

µ
(mu)
i,t+1 = ci,tC

−1
i,t u

(mu)
i,1:t ,

σ2(mu)

i,t =
ν0σ0+u

(mu)
i,1:t C

−1
i,t

(
u
(mu)
i,1:t

)>
νt

,

l
(mu)2

i,t+1 = σ2(mu)

i,t

(
ρui(0)− ci,tC

−1
i,t c
>
i,t

)
.

3. Propagate the latent state by oversampling Mx particles (to
improve diversity) from the conditional on the fGp samples.

• If the mixing parameters are known,

x
(mu,mx)
t+1 ∼ f(xt+1|u(mu)

t+1 ) = N (Au
(mu)
t+1 , Cw).

• If the mixing parameters are unknown,

x
(mu,mx)
t+1 ∼ f(xt+1|u(mu)

t+1 ) = T (νt+1, µ
(mu)
t+1 , R

(mu)
t+1 ),

where

νt+1 = t− dx − du + 1,

Â
(mu)
t = X

(mu)
t (U

(mu)
t )>(U

(mu)
t (U

(mu)
t )>)−1,

µ
(mu)
t+1 = Â

(mu)
t u

(mu)
t+1 ,

R
(mu)
t+1 =

(
X

(mu)
t −Â(mu)

t U
(mu)
t

)(
X

(mu)
t −Â(mu)

t U
(mu)
t

)>
νt+1

(
1−(u

(mu)
t+1 )>(U

(mu)
t+1 (U

(mu)
t+1 )>)−1u

(mu)
t+1

) .

4. Compute the non-normalized weights for the drawn particles
according to

w̃
(mu,mx)
t+1 ∝ f(yt+1|x(mu,mx)

t+1 ),

and normalize them to obtain a new random measure

χt+1 =
{
u
(mu)
1:t+1, x

(mu,mx)
1:t+1 , w

(mu,mx)
t+1

}
.

5. Perform downsampling fromMu×Mx toMu (this is needed
to prevent the growth of the number of samples with time) by
drawing the tuple

{
u
(mu)
1:t+1, x

(mu)
1:t+1

}
from a categorical distri-

bution defined by the random measure χt+1{
u
(mu)
1:t+1, x

(mu)
1:t+1

}
∼ χt+1, where mu = 1, · · · ,Mu.

4. SIMULATION RESULTS

We evaluate the proposed SMC method on the stochastic volatility
model, which is commonly used in finance [30]. The model is given
by 

u1,t ∼ fGp(H1, σ
2
1),

u2,t ∼ fGp(H2, σ
2
2),(

x1,t

x2,t

)
=

(
1 ρ

ρ 1

)(
u1,t

u2,t

)
+N (0, σ2

wI),

yt = x1,t + ex2,t/2vt,

(12)

where vt represents a standard Gaussian variable.
Note that ρ is the idiosyncratic correlation between the trend x1

and log-volatility x2 of a return yt observed over time, while σ2
w is

the variance of the additive noise wt in (1).
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(a) All parameters are known.
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(b) The variances σ2
i are unknown.
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(c) The mixing parameters are unknown.
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(d) All parameters are unknown.

Fig. 1: Estimated (red) and true (black) states x1.
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(a) u1 for H1 = 0.5, H2 = 0.5.
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(b) u2 for H1 = 0.5, H2 = 0.5.
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(c) x1 for H1 = 0.5, H2 = 0.5.
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(d) x2 for H1 = 0.5, H2 = 0.5.
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(e) u1 for H1 = 0.7, H2 = 0.7.
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(f) u2 for H1 = 0.7, H2 = 0.7.
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(g) x1 for H1 = 0.7, H2 = 0.7.
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(h) x2 for H1 = 0.7, H2 = 0.7.
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(i) u1 for H1 = 0.9, H2 = 0.9.
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(j) u2 for H1 = 0.9, H2 = 0.9.
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(k) x1 for H1 = 0.9, H2 = 0.9.
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(l) x2 for H1 = 0.9, H2 = 0.9.

Fig. 2: Filtering MSE for latent fGn and state

The latent OfGp allows for modeling of clustering in the return
and volatility [4], i.e., the tendency of asset returns to show large
magnitudes in periods of high volatility and calmness in periods of
low volatility. Furthermore, we relate the expected asset return to its
risk or volatility. We consider an idiosyncratic correlation between
the return and its volatility through the mixing matrix A and, at the
same time, allow for some random perturbations. The model is used
to illustrate the performance of the suggested method, but we do not
claim that it fits to any particular instance of real data.

In Fig. 1, we show on a particular realization the capability of
the proposed SMC method to track the latent OfGp under different
circumstances (we present the estimates of x1, but similar results are
obtained for other latent variables). The plots show a good tracking
accuracy and suggest that the impact of not knowing σ2

i is less severe
than not knowing the mixing parameters. This intuition is backed up
by results presented in Fig. 2, where the suggested method is eval-
uated for different combinations of Hurst parameters and ρ values.
All the results have been averaged over 25 realizations and obtained
with known Hi values and Mu = 500, Mx = 20, σ2

w = 0.01.

We note that with the increase of memory of the latent process
(i.e., when Hi → 1), the MSE of the latent states decreases. This
effect is more evident for the variables x1 and x2, but it is also ob-
served for the fGps u1 and u2. We also have worse estimation ac-
curacy for the log-volatility when compared to the trend due to its

implicit nonlinearity. That is, the method is able to track the trend
(i.e., u1 and x1) much better than the log-volatility (i.e., u2 and x2).

Finally, the results in Fig. 2 reveal that the performance of the
SMC methods is consistent for different values of ρ. The justifi-
cation comes from the way the proposed approach deals with the
mixing parameters (by integrating them out). We reiterate that the
marginalization is generic, as we do not assume any particular value
or structure for A and Cw.

5. CONCLUSIONS

We studied the estimation of correlated latent stochastic processes
with long-memory properties. The used models are hierarchical,
where the latent states are composed of a set of independent frac-
tional Gaussian processes and an operator fractional Gaussian pro-
cess embedded in white Gaussian noise. The operator fractional
Gaussian process is formed by correlated mixtures of the fractional
Gaussian processes. The inference of these processes is made from
noisy nonlinear observations of the states. We adopted a Bayesian
methodology and proposed flexible Sequential Monte Carlo meth-
ods for estimating all the latent states. The methods are able to track
both the independent fractional Gaussian processes and the opera-
tor fractional Gaussian process. The simulation results validate the
accuracy of the proposed approach.
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