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Abstract
Transfer learning is a vital technique that generalizes models trained for

one setting or task to other settings or tasks. For example in speech
recognition, an acoustic model trained for one language can be used to
recognize speech in another language, with little or no re-training data.
Transfer learning is closely related to multi-task learning (cross-lingual vs.
multilingual), and is traditionally studied in the name of ‘model adaptation’.
Recent advance in deep learning shows that transfer learning becomes
much easier and more effective with high-level abstract features learned by
deep models, and the ‘transfer’ can be conducted not only between data
distributions and data types, but also between model structures (e.g., shallow
nets and deep nets) or even model types (e.g., Bayesian models and neural
models). This review paper summarizes some recent prominent research
towards this direction, particularly for speech and language processing. We
also report some results from our group and highlight the potential of this
very interesting research field.

Keywords: transfer learning; speech and language processing; deep
learning

1 Introduction
Machine learning (ML) techniques have been extensively exploited in modern speech and
language processing research [1, 2, 3]. Among the rich family of ML models and algo-
rithms, transfer learning is among the most interesting. Generally speaking, transfer learn-
ing involves all methods that utilize any auxiliary resources (data, model, labels, etc.) to
enhance model learning for the target task [4, 5, 6, 7]. This is very important for speech
and language research, since human speech and languages are so diverse and imbalanced.
There are more than 5, 000 languages around the world, and the number is even bigger if
dialects are counted. Among this big family, 389 languages (nearly 6%) account for 94% of
the word’s population, and the rest thousands languages are spoken by very few people.[1]

Even for the 389 ‘big’ languages, only very few possess adequate resources (speech signal,
text corpus, lexicon, phonetic/syntactic regulations, etc.) for speech and language research.
If we talk about ‘rich-resource’ languages, perhaps only English is in that category. Addi-
tionally, resources in different domains are also highly imbalanced, even for English. This
means that almost all research in speech and language confront the challenge of data spar-
sity. More seriously, human language is such dynamic that new words and domains emerge
every day, and so no models learned at a particular time will remain valid for ever.

[1]https://www.ethnologue.com/statistics
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With such diversity, variation, imbalance and dynamics, it is almost impossible for speech
and language researchers to learn a model from one single data resource and then put it on
the shelf. We have to resort to some more smart algorithms that can learn from multiple
languages, multiple data, multiple domains and keep the model adapted. On the other hand,
it would be not very controversial to argue that human speech and languages hold some
common statistical patterns at both the signal and symbolic levels, so that learning from
multiple resources is possible.

In fact, transfer learning has been studied for a long time in a multitude of research fields
in speech and language processing, e.g., speaker adaptation and multilingual modeling in
speech recognition, cross-language document classification and sentiment analysis. Most
of the studies, however, are task-driven in their own research fields and seldom hold deep
understanding about the position of their research in the whole picture of transfer learning.
This prevents researchers from answering some important questions: how and in which
conditions their methods work, what are possible alternatives of their methods, and what
advantages can be achieved with different alternatives? In this paper, we will give a brief
summary of the most promising transfer learning methods, particularly within the modern
deep learning paradigm. Special focus will be put on the application of transfer learning in
speech and language processing, and some recent results from our research team will be
presented.

We highlight that it is not our goal to present an entire list of the transfer learning methods
in this paper. Instead, the focus is put on the most promising approaches for speech and
language processing. Even with such a constraint, the work on transfer learning is still too
much to be enumerated, and we can only touch a small part of the plenty techniques. We
decide to focus on two specific domains: speech recognition and document classification,
particularly the most recent advances based on deep learning which is most relevant to our
research. For more detailed surveys on transfer learning in broad research fields, readers
are referred to the nice review articles from Pan, Taylor, Bengio and Lu [4, 5, 6, 7] and the
references therein.

The paper is organized as follows: Section 2 gives a quick review of the transfer learning
approach, and Section 3 and Section 4 discuss application of transfer learning in speech
processing and language processing respectively. The paper is concluded in Section 5, with
some discussions for the future research directions in this very promising field.

2 Transfer learning: A quick review
The motivation of transfer learning can be found in the idea of ”Learning to Learn”, which
stats that learning from scratch (tabula rasa learning) is often limited, and so past expe-
rience should be used as much as possible [8]. For instance, once we learned that a hard
apple is often sour, this experience can be used when we select pears: we conjecture that
hard pears are also sour. This idea and associated research trace back to 20 years ago and
were summarized in the NIPS 95 workshop on ‘Learning to Learn: Knowledge Consolida-
tion and Transfer in Inductive Systems’ [9]. Many ideas and research goals raised in that
workshop last two decades and influence our research till today, though the data, models,
algorithms, computing power have dramatically changed. Some of the recent developments
were discussed in several workshops, e.g., the ICML 2011 workshop on unsupervised and
transfer learning[2]; the NIPS 2013 workshop on new directions in transfer and multitask[3];
[2]http://clopinet.com/isabelle/Projects/ICML2011/
[3]https://sites.google.com/site/learningacross/
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the ICDM 2015 workshop on practical transfer learning[4]. In this section, we review some
of the most prominent approaches to transfer learning, particularly those have been applied
to or are potential for speech and language processing.

2.1 Categories of transfer learning
The initial idea of transfer learning is to reuse the experience/knowledge obtained already
to enhance learning for new things. Depending on the relation of the ‘old things’ (source)
that we have learned and the ‘new things’ (target) that we want to learn, a large amount of
methods have been devised, in different names by different authors. A short list of these
names include multitask learning, lifelong learning, knowledge transfer, knowledge con-
solidation, model adaptation, concept drift, covariance shift, etc. Different researchers hold
different views for the categorization of these methods. For example, Pan and Yang [4] be-
lieved transfer learning should really ‘transfer’ something so multitask learning should be
regarded as a different approach, while Bengio [6] treated transfer learning and multitask
learning as synonyms.

In our opinion, the different learning methods mentioned above can be regarded as par-
ticular implementations of transfer learning applied in different conditions or by different
ways. For example, model adaptation is applied to conditions where the data distributions
of the source and target domains are clearly different, while covariance drift is applied
to conditions where the distribution changes gradually. As another example, knowledge
transfer is applied to the condition where the source model and target model are trained
sequentially, while multi-task learning is applied to the condition where the source and tar-
get models are trained simultaneously. No matter what forms and properties the learning
methods hold, what they all have in common is ‘the attempt to transfer knowledge from
other sources to benefit the current inductive task’, and the benefit of the transfer involves
faster convergence, more robust models and less data sensitivity.

We can thus categorize transfer learning into several classes according to the conditions
that they apply to. Following the taxonomy in [4], we use data and task as two conditional
factors of transfer learning. For the data condition, it involves the feature space X (e.g.,
audio or text) and the distribution P (X) of the feature (e.g., financial news and scientific
papers); for the task condition, it involves the label space Y (e.g., speech phones or speaker
identity) and the model M(x) (e.g., probabilistic models or neural models). Any of the two
components of the two conditional factors can be the same or different for the learning in
the source and target domains, and their relation is shown in Fig. 1. Note that if the feature
space is different for the source and target domains, then their distributions are certainly
different. Similarly, if the labels are different, then the models are regarded as different,
although models from the same family might be used in the source and target domains.

According to whether the conditional factors (data and task) of the learning in the source
and target domains are different or not, transfer learning methods can be categorized into
several classes. Table 1 shows some of the most popular transfer learning approaches that
are applicable in different conditions. In the table, ‘+’ means the corresponding conditional
factor is the same for the source and target domains, while ‘-’ means different. Note that
transfer learning is such a large research field and it is impossible to classify all the methods
in such a simple way. For example, an important factor that discriminates different learning
methods is whether or not the data in the source and target domains are labelled, which
[4]https://sites.google.com/site/icdmwptl2015/home
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Figure 1: Relation of the conditional factors in the transfer learning paradigm. X1 and Y1
are the feature and label spaces respectively for the learning task in the source domain, and
X2 and Y2 are for the learning task in the target domain. M1(x) and M2(x) represent the
models in the source and target domains, respectively.

is not clearly reflected in the table (though we will discuss the related issue in the next
section). Anyway, Table 1 gives a rough picture how big the family of transfer learning
methods and how they can be categorized according to the conditional factors.

Table 1: Categories of transfer learning
Y+ Y−

M(x)+ M(x) -
X+ P(X)+ Conventional ML Model transfer[10] Multitask learning[11]

P(X)- Model Adaptation[12, 13], incremental learning[14]
X− Co-training[15]

Heterogeneous transfer learning[16, 17] Analogy learning [18]

2.2 Transfer learning methods
We give a short description of the learning methods appearing in Table 1. For each method,
only the general idea is presented, and application of these methods to speech and language
processing is left to the next sections.

2.2.1 Model adaptation and incremental training
The simplest transfer learning is to adapt an existing model to meet the change of data dis-
tribution. Both the feature and label spaces are the same for the source and target domains,
and the models are the same. There are various approaches for model adaptation. For exam-
ple, the maximum a posterior (MAP) [12] estimation and the maximum likelihood linear
regression (MLLR) algorithm [13]. If the distribution changes gradually, then incremental
or online learning is often used, e.g. [14, 19, 20].

Note that the adaptation can be either supervised or unsupervised. In the supervised learn-
ing, the data in the target domain are labelled, while in the unsupervised learning, no labels
are available and they have to be generated by the model in the source domain before the
adaptation can be performed. The latter case is often referred to as semi-supervised learn-
ing [21]. Note that semi-supervised learning is a general framework to deal with unlabelled
data, and can be applied to any conditions where the label spaces are the same in the source
and target domains. We will come back to this method in heterogeneous transfer learning
that will be discussed shortly. Another approach to dealing with unlabelled data is to use
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them to derive new features (e.g., by linear projection) where the distributions of the data
in the source domain and the target domain are close to each other. An interesting work
towards this direction is the approach based on transfer component analysis (TCA) [22].

In another configuration, some unlabelled data are available but the distribution is dif-
ferent from that of the target domain. These data can be not used for adaptation (either by
semi-supervised learning or TCA) otherwise the model will be adapted to a biased condi-
tion. However, it can be used to assist deriving more robust features. The idea is similar to
TCA, but the unlabelled data are not used as supervision about the target domain, instead
as an auxiliary information to derive more domain-independent features. This approach is
often referred to as self-taught learning [23], and it essentially holds the same idea as the
more recent deep representation learning that will be discussed in Section 2.3.

2.2.2 Heterogeneous transfer learning
A more complex transfer learning scenario is to keep the labels and model unchanged,
however the features are different in the source and target domains. The transfer learning
in this scenario is often called heterogeneous transfer learning. The basic assumption for
heterogeneous transfer learning is that some correspondence between the source and target
domains exist, and this correspondence can be used to transfer knowledge in one domain to
another. For example, speech and text are two domains, and there is clear correspondence
between the two domains based on human concepts: no matter we speak or write ‘chicken’,
it is clear that we refer to the same bird that has wings but can not fly much.

The early research tried to define and utilize the correspondence between the instances
of the source and target domains. For example, [24] employed an oracle word translator to
define some pivot words that were used to establish the cross-domain correspondence by
learning multiple linear classifiers that predict the ‘joint existence’ of these words in the
multi-domain data. In [25] some instance-level co-occurrence data were used to estimate
the correspondence in the form of joint or conditional probabilities; this correspondence
was then used to improve the model in the target domain by risk-minimization inference.
Asymmetric regularized cross-domain transformation was proposed in [26], which tries
to learn a non-linear transform between the source and target domains by class-labeled
instances from both source and target domains. Although an instance does not necessarily
possess features of both domains, the class labels offer the correspondence information.

More recent approaches prefer to finding common representations of the source and
target domains, for example by matrix factorization [17], RBM-based latent factor learn-
ing [27], or joint transfer optimization [28, 16, 29]. More recently, deep learning and het-
erogeneous transfer learning are combined where high-level features are derived by deep
learning and inter-domain transforms are learned by transfer learning [30].

We emphasize that most of the approaches discussed above assume that the label space
does not change when transferring from the source domain to the target domain. A more
ambitious task is to learn from very different tasks for which the label space is different
from the target domain. For example, the task in the source domain is to classify document
sentiment, while in the target domain the task is to classify image aesthetic value. This
two tasks are fundamentally different, however some analogy does exist between them.
Learning correspondence between two independent but analogous domains is easy for hu-
mans [31, 32, 33], however it is very difficult for machines. There has been long-term
interest in analogy learning among artificial intelligence researchers, e.g., [34, 18], though



Wang and Zheng Page 6 of 22

not too much achievement yet. Interestingly, the recent improvement in deep learning meth-
ods seems provide more hope in this direction, by a unified framework for representation
learning and multitask learning. This will be discussed in Section 2.3.

2.2.3 Multiview co-training
A special case of heterogeneous transfer learning is the multi-view co-training, which as-
sumes that each training instance involves features of both the source and target domains,
but only the feature in the target domain is available at runtime. In this condition, hetero-
geneous transfer learning is not very effective since the training instances in the source
domain are the same as the instances in the target domain and so does not provide much
additional information, at least with supervised learning. However, the multi-view property
of the training data indeed can be used to improve unsupervised learning with unlabelled
data, by the approach called co-training [15]. Specifically, co-training trains two separate
models with features of the source and target domains respectively, and then generates
labels for the unlabelled data using one model, which are in turn used to update the other
model. This process iterates until convergence is obtained. It is well-known that co-training
leads to better models than training with the feature of the target domain only.

2.2.4 Model transfer
If the feature and label spaces are the same however the models are different for the source
and target domains, the knowledge learned by the source model can be transferred to the
target model by model transfer. For example, in the source domain the model is a Gaussian
mixture model (GMM), while in the target domain the model is a deep neural network
(DNN). The transfer learning then exploits the GMM to initialize and boost the DNN. This
is the general recipe in the modern DNN-based speech recognition system. Recently, this
model transfer has gained much attention in the deep learning community. For example, it is
possible to learn simple neural nets from a complex DNN model, or vice versa [10, 35, 36].
Some interesting work in this direction will be presented in the next sections.

2.2.5 Multitask learning
In the case where the feature spaces of the source and target domains are the same but the
task labels are significantly different, multitask learning is more applicable [11, 37, 38]. The
basic assumption of this learning approach is that the source and target tasks are closely
related, either positively or negatively, so that learning for one task helps learning the other
in the form of mutual regularization. Multitask learning is a general approach that can be
applied to boost various types of models including kernel regression, k-nearest neighbour,
and it can be even employed to learn ‘opposite’ tasks simultaneously, e.g., text content
classification and emotion detection [39].

A particular issue of multitask learning is how to evaluate the relevance of two tasks so
that whether they can be learned together can be determined. Although there is not a sim-
ple solution yet, [38] indeed provided an interesting approach that estimates the relevance
between tasks by evaluating the overlap of different tasks in the same semantic space.

2.3 Transfer learning in deep learning era
Deep learning almost changed everything, including transfer learning. Because deep learn-
ing gains so much success in speech and language processing [40, 41, 42, 43], we put
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more emphasis on transfer learning methods based on deep models in this paper. Roughly
speaking, deep learning consists of various models that involve multi-level representations
and the associated training/inference algorithms. Typical deep models include deep be-
lief networks (DBNs) [44], deep Boltzmann machines (DBMs) [45], deep auto encoders
(DAEs) [46, 47], deep neural networks (DNNs) [48, 41] and deep recurrent neural networks
(RNNs) [49].

The success of deep models is largely attributed to their capability of learning multi-level
representations (features), which simulates the processing pipeline of human brains where
information is processed in a hierarchical way. The multi-level feature learning possesses
several advantages. First, it can learn high-level features which are more robust against
data variation than features at low-levels; second, it offers a hierarchal parameter sharing
that holds great expressive power [50]; third, the feature learning can be easily conducted
without any labelled data and so is cheap; fourth, with a little supervised training (fine-
tuning), the learned models can be well adapted to specific tasks [11, 51, 52].

For these reasons, deep learning provides a graceful framework for transfer learning,
which unifies almost all the approaches listed in Table 1 as representation learning. The
basic idea is to learn some high-level robust features that are shared by multiple features
and multiple tasks, so that all the knowledge/model transfers are implemented as feature
transfer. This approach was advocated in the NIPS95 workshop as a major research direc-
tion, but it was not such successful until deep learning became a main stream in machine
learning and related fields [53, 6, 54, 55].

The transfer learning architecture based on deep representation learning is illustrated
in Fig.2. The left part of this figure is the joint training phase where heterogeneous input
features are projected onto a common semantic space by different pre-processing networks,
and the shared features involve rich explanatory factors that can be used to perform multiple
tasks. The right part of the picture illustrates the adaptation phase, where some data X2

for the target task Y2 have been provided, either with or without labels, and the model is
updated with the new data which follows a distribution P ′

2(x) that is different from the
original distribution P2(x) in the joint training phase.

1 2

1 2

P1(x)

P2(x)

1 2

21

P'2(x)

Figure 2: Transfer learning architecture with deep representation learning. X1 and Y1 are
the feature and label spaces respectively for the learning task in the source domain, and X2

and Y2 are for the learning task in the target domain. At the runtime, only the target domain
is concerned.
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The framework in Fig. 2 is very flexible and covers almost all the methods in Table 1.
For example, without the adaptation phase, it is basically a multitask learning, while using
multi-domain data also implements structural correspondence learning and latent represen-
tation learning. If the joint training phase involves only a single task, then the adaptation
phase implements the conventional model adaptation. It should be highlighted that a par-
ticular advantage of the representation learning framework is that the feature extractor can
be trained in an unsupervised way, e.g., by restricted Boltzmann machines (RBMs) [56] or
auto-associators [46], therefore little or no labelled data are required. According to [6], as
long as the distribution P (X) is relevant to the class-conditional distribution P (Y |X), the
unsupervised learning can improve the target supervised learning, in terms of convergence
speed, amount of labelled data required and model quality.

An early work based on deep representation learning is [57], where the authors used un-
supervised learning (denoising auto-encoders) to extract high-level features, and trained a
sentiment analysis system in one domain (e.g., book review). They found that the system
could be directly migrated to a new domain (e.g., DVD review) and achieved much bet-
ter performance than competitive approaches including structural correspondence learning
(SCL) and spectral feature alignment (SFA). This work demonstrated that high-level ab-
stract features are highly domain-independent and could be easily transferred across do-
mains, even without any adaptation. As another example, [58] showed that CNN-based
representations learned from a large image database imageNet were successfully applied
to represent images in another database PASCAL VOC. A similar study was proposed re-
cently in [59] where CNN features trained on multiple tasks were successfully applied to
analyze biological images in multiple domains.

In another example called ‘one-short learning’ [60], high-level features trained on a large
image database were found to be highly generalizable, and a very few labeled data could
adapt models to recognize unseen objects by identifying the most relevant features. In a
more striking configuration, the learning task can be specified as an input vector and fed
into the deep nets together with the input data. The network then can learn the complex
relationship between the data vector, the task vector, and the task labels. As long as the
new task can be related to the tasks seen in the training phase (which can be obtained by
a distributed task vector with which the relation between tasks can be estimated from the
distance between task vectors), the new task can be well performed without any adaptation.
This leads to the zero-data learning [61] and zero-shot learning [62].

3 Transfer learning in speech processing
Speech signals are pseduo-stationary and change vastly according to a large number of
factors (language, gender, speaker, channel, environment, emotion, ...). Dealing with these
varieties is the core challenge of the speech processing research, and transfer learning is an
important tool to solve the problem. It is not possible to cover all the researches in a short
paper, so we select three most prominent fields where transfer learning has gained much
success: transfer across languages, transfer across speakers, and transfer across models.

3.1 Cross-lingual and multilingual transfer
It is natural to believe that some common patterns are shared across languages. For exam-
ple, many consonants and vowels are shared across languages, defined by some universal
phone sets, e.g., IPA. This sharing among human languages have been utilized explicitly
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or implicitly to improve statistical strength in multilingual conditions, and has delivered
better models than training with monolingual data, especially for low-resource languages.
This advantage has been demonstrated in a multitude of research fields, though our review
simply focuses on speech recognition and speech enhancement.

Early approaches to employing cross-lingual or multilingual resources is via some
linguistic correspondence, e.g., by a universal phone set or a pair-wised phone map-
ping [63, 64]. With the popularity of deep learning, the DNN-based multilingual approach
in the form of representation learning gained much interest. The basic idea is that the fea-
tures learned by DNN models tend to be language-independent at low layers and more
language-dependent at high layers. Therefore multilingual data can be used to train a mul-
tilingual DNN where the low-level layers are shared by all languages, while the high-level
layers are language specific. This is fully consistent with the representation learning frame-
work shown in Fig. 2, where Y1 and Y2 represent two languages. By this sharing diagram,
the features can be better learned with multilingual data, and for each language, training
only the language-specific part is much easier than training the entire network.

The initial investigation was proposed in [65], where multilingual data were used to ini-
tialize the DNN model for the target language. Interesting improvement was reported and
this approach was quickly followed by researchers, with both the DNN-HMM hybrid set-
ting and the tandem setting.

With the hybrid setting, DNNs are used to replace the conventional GMMs to estimate
the likelihood of HMM states. In the multilingual scenario, the hidden layers of the DNN
structure are shared across languages and each language holds its own output layer [66,
67, 68]. The training process then learns a shared feature extractor as well as language-
dependent classifiers. This approach was proposed independently by three research groups
in 2013, and tested on three different databases: English and Mandarin data [66], eleven
Romance languages [67] and the global phone dataset with 19 languages [68]. A simple
extension of the above setting is to involve multiple layers in the language-specific part,
or simply use different classifiers (the default is software regression), although the latter is
much similar to the tandem approach discussed below.

With the tandem setting, DNNs are used as feature exactors, based on which posterior
features or bottleneck features are obtained and are used to train conventional GMM-HMM
systems. In [69, 70], the same DNN structure as in the hybrid setting was used to train a
multilingual DNN, however the model was used to produce features (from the last hidden
layer) instead of state likelihood. It was showed that the features generated by multilingual
DNNs are rather language-independent and can be used directly for new languages. With
limited adaptation data in the target language, additional performance could be obtained.
The same approach was proposed in [71], though the features were read from a hidden
layer in the middle layer (the bottle net layer with less neurons than other layers) instead of
the last hidden layer. The features produced in this way are often referred to as bottleneck
(BN) features. Combing with a universal phone set, the language-independent BN features
can be used to train models for languages even without any labelled data [72].

The hybrid setting and tandem setting can be combined. For example, in [73], the BN
feature was first derived from a multilingual DNN, and then it was combined with the
original feature to train a hybrid system. A similar approach was proposed in [74], where
the BN feature extractor for each language was regarded as a module, and another DNN
combined the BN features from the modules of multiple languages to construct the hybrid
system.
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The multilingual DNN approach described above belongs to multitask learning which
can be extended to more general settings. For example, in [75] phone recognition and
grapheme recognition were treated as two different tasks to supervise the DNN acoustic
model training. They tested on three low-resource south African languages and showed
that the mutitask training indeed improved performance. They also compared the multitask
training with the conditional training where the grapheme recognition provided additional
input for the phone recognition, instead of co-supervision.

In a slightly different configuration, we reported a multitask learning which learns speech
content and speaker accent together [76]. In this approach, a pronunciation vector that rep-
resents the accent of a speaker is generated by either an i-vector system or a DNN system.
This pronunciation vector can be integrated in the input or hidden layers as additional
features (the conditional learning), or used as an auxiliary output of a hidden layer (the
multitask learning). In the latter setting, the pronunciation vector plays the role of a regu-
larization to help learn better representations that can disentangle the underlying factors of
the speech signal. We tested the method in an English ASR task where the speech data are
in multiple accents (British and Chinese). We found that both the two approach could im-
prove performance for utterances in both British and Chinese accents. An advantage with
the second setting, however, is that the pronunciation vector is required only at the training
phase. This is actually a heterogeneous multitask learning that has been proposed for a long
time [11] but has not been studied much in speech processing.

Besides speech recognition, cross-lingual and multilingual transfer were also proposed
for speech enhancement. The assumption is that the noise and reverberation that need to be
removed are largely language-independent, and therefore an enhancement model trained
with the data in one language can be applied directly to other languages. For example,
in [77], an DNN architecture trained in English data was demonstrated to be highly effec-
tive for enhancing speech signals in Chinese, by re-using the first several layers which were
assumed to be language-independent. Another study published recently from our group
demonstrated that a DNN structure can be used to remove music from speech in multilin-
gual conditions [78].

3.2 Speaker adaptation
Speaker adaptation is another domain in which transfer learning has gained brilliant suc-
cess. In the paradigm of parametric statistic models (e.g., Gaussian models or Gaus-
sian mixture models), maximum a posterior (MAP) estimation [12] and maximum like-
lihood linear regression (MLLR) [13] are two most successful methods to adapt a general
model to a specific speaker. These methods are still the research focus of some authors,
e.g. [79, 80, 81]. A short survey for these early-stage techniques can be found in [82].

In the deep learning era, DNN models are widely used nearly everywhere. However,
adapting neural network, particular a deep one, is not simple, because DNN is a highly
compact distributed model. It is not easy to learn a simple form (with limited amount
of parameters) such as MLLR to update all parameters of the network. However, recent
research shows that with some particular constrains on the adaptation structure, speaker
adaptation is possible for DNN models.

An early study reported in [83] introduced a user vector (user code) to represent a speaker,
and the vector was augmented to the input and hidden layers. The learning then trained the
network and the speaker code simultaneously. To adapt to a new speaker, the network was
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fixed while the speaker vector was inferred by the conventional back-propagation algo-
rithm [84]. This approach was extended in [85] by involving a transform matrix before
the speaker vector was augmented to the input and hidden layers, possibly in the form of
low-rank matrices.

In a similar setting, the speaker code can be replaced by a more general speaker vector
produced by exotic models, e.g., the famous i-vector [86]. Different from the speaker code
approach, these speaker vectors do not need to be adapted (although it is possible) [87, 88,
89, 90]. An advantage of using exotic speaker vectors is that the speaker vector model can
be trained with a large unlabelled database in an unsupervised fashion. A disadvantage is
that no phone information is considered when deriving the vectors, at least it is case with
the i-vector model. A careful analysis for the i-vector augmentation was conducted in [91],
which showed that i-vectors not only compensate for speaker variance but also acoustic
variance.

In contrast to involving an speaker vector, the second approach to speaker adaptation
for DNN models is to update the DNN model directly, with some constraints on which
components of the DNN should be adapted. For example, the adaptation can be conducted
on the input layer [92, 93], the activations of hidden layers [94, 95, 96], or the output
layer [93]. Some comparison for adaptation on different components can be found in [97,
98]. In order to constrain the adaptation more aggressively, [99, 100] studied a singular
value decomposition (SVD) approach which decomposes a weight matrix as production
of low rank matrices, and only the singular values are updated for each speaker. Another
constraint for speaker adaptation is based on a prior distribution over the output of the
adapted network, which is imposed by the output of the speaker-independent DNN, in the
form of KL-divergence [101].

Another interesting approach to speaker adaptation for DNN models is to apply transfer
learning to project features to a canonical speaker-independent space where a model can be
well trained. For example, the famous constrained MLLR (CMLLR) in the HMM-GMM
architecture [13]. Recently, an auto-encoder trained with speaker vectors (obtained from
a regression-based speaker transform) was used to produce speaker-independent BN fea-
tures [102]. A similar approach was studied in [103], though an i-vector was used as the
speaker representation.

Most of the above researches are based on the DNN structure. Recent research shows
that RNNs can be adapted in a similar way. For example, [104] reported an extensive study
on speaker adaptation for LSTMs. It was found that LSTMs can be effectively adapted by
using speaker-adaptive (SA) front-end (e.g., a speaker-aware DNN projection [103]), or by
inserting speaker-dependent layers.

It should be noted that DNN itself possesses great advantage of learning multiple condi-
tions. Therefore, DNN models trained with a large amount of data of multiple speakers can
deal with speaker variation pretty well. This conjecture was demonstrated by [98], which
showed that the adaptation methods provide some improvement if the network is small and
the amount of training data is medium, however for a large network trained with a large
mount of data, the improvement is insignificant.

The techniques discussed above are mostly applied to speech recognition, however they
can be easily migrated to other applications. For example in HMM-based speech synthesis,
model adaptation based on MAP and MLLR has been widely used to produce specific
voice, e.g., [105, 106, 107, 108]. Particularly, speaker adaptation is often coupled with
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language adaptation to obtain multilingual synthesis, e.g., by state mapping [106, 109, 110].
For DNN-based speech synthesis [111, 112, 113], it is relatively new and the adaptation
methods have not been extensively studied, except a few exceptions [114, 115].

3.3 Model transfer
A recent progress in transfer learning is to learn a new model (child model) from an existing
model (teacher model), which is known as model transfer. This was mentioned in the sem-
inal paper of multitask learning [11] and was recently rediscovered by several researchers
in the context of deep learning [116, 10, 117]. The initial idea was that the teacher model
learns rich knowledge from the training data and this knowledge can be used to guide the
training of child models which are simple and hence unable to learn many details without
the teacher’s guide. To distill the knowledge from the teacher model, the logit matching ap-
proach proposed by Ba [116] teaches the child model by encouraging its logits (activations
before softmax) close to those generated by the teacher model in terms of square error, and
the dark knowledge distiller model proposed by Hinton [10] encourages the output of the
child model close to those of the teacher model in terms of cross entropy.

This approach has been applied to learn simple models from complex models so that the
simple model can approach the performance of the complex model. For example, [117]
utilized the output of a complex DNN as regularization to learn a small DNN that is suit-
able for speech recognition on mobile devices. [118] used a complex RNN to train a DNN.
Recently, a new architecture called FitNet was proposed [119]. Instead of regularizing the
output, FitNet regularizes hidden units so that knowledge learned by the intermediate rep-
resentations can be transferred to the target model, which is suitable for training a model
whose label space is different from that of the teacher model. This work was further ex-
tended in [120], where multiple hidden layers were regularized by the teacher model. An-
other example is to transfer heterogeneous models. For instance, in [121], unsupervised
learning models (PCA and ICA) were used to model the outputs of a DNN model. This
in fact treats the DNN output as an intermediate feature, and uses the feature for general
tasks, e.g., classifying instances from novel classes.

Our recent work [35] showed that this model transfer can not only learn simple models
from complex models, but also the reverse: a weak model can be used to teach a stronger
model. In our work [35], a DNN model was used to train a powerful complex RNN. We
found that by the model transfer learning, RNNs can be learned pretty well with the reg-
ularization of a DNN model, though the teacher model is weaker than the target one. In
a related work [36], we found that the model transfer learning can be used as a new pre-
training approach, and it even works in some scenarios where the RBM pre-training and
layer-wised discriminative pre-training do not work. Additionally, combining the RMB-
based pre-training and the model transfer pre-training can offer additional gains, at least in
our experimental setting where the training data is not very abundant.

4 Transfer learning in language processing
As in speech processing, the basic assumption of transfer learning for language process-
ing is also intuitive: all human languages share some common semantic structures (e.g.,
concepts and syntactic rules). Following this idea, the simple way of transfer learning in
multilingual or multi-domain scenarios is to construct some cross-lingual/cross-domain
correspondence so that knowledge learned in one language/domain can be transferred and
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reused in another language/domain. For example, a bi-lingual lexicon can be used to pro-
vide instance-level correspondence so that syntactic knowledge learned in one language can
be used to improve the syntactic learning in the second language [122]. Another approach
that gained more attention recently is to learn a common latent space that are shared by
different languages or domains, so that knowledge can be aggregated, leading to improved
statistic strength for probabilistic modeling in each single language or domain.

Once again, transfer learning is such a broad research field and the research of language
processing is even more broad itself, which makes a detailed review for all the research
fields impossible in such a short paper. We will focus on two particular fields: cross-lingual
learning and cross-domain learning, particularly for the document classification task.

4.1 Cross-lingual and multilingual transfer learning
A straightforward way to transfer knowledge between languages is to translate words from
one language to another by a bi-lingual lexicon. For example, this approach was used
in [123] to translate a maximum entropy (ME) classifier trained in English data to a clas-
sifier used for classifying Chinese documents. In another work from our group, we have
applied this approach successfully to train multilingual language models, where some for-
eign words need to be addressed [124]. Word-by-word translation, however, is obviously
not ideal since no syntactic constraints in different languages are considered. A more com-
plicated approach is to translate the whole sentence by machine translation [125], so that
any labelling or classification tasks in one language can be conducted with models trained
in another language.

A more recent approach to multilingual learning is to learn some common latent struc-
tures/representations based on multilingual data. For example, the multilingual LDA model
proposed in [126] assumes a common latent topic space, so that words from multiple lan-
guages can share the same topics. This is similar to the RMB-based heterogeneous factor
learning [27]: both are based on unsupervised learning with weak supervision, i.e., no word
alignment is required.

A similar approach proposed in [127] learns multilingual word clusters, where a cluster
may involve words from different languages. This was achieved by means of a probabilistic
model over large amounts of monolingual data in two languages, coupled with parallel data
through which cross-lingual correspondence was obtained. Applying to the NER task, it
was found that up to 26% performance improvement was observed with the multi-lingual
model. This work was extend in [128] where cross-lingual clusters were used to ‘directly’
transfer an NER model trained in the source language to the target language.

Another approach to constructing common latent space is by linear projection instead
of statistical models. For example, in the heterogeneous feature augmentation (HFA) ap-
proach proposed in [29], two linear projections are learned to project features in different
languages to a common space. In their study, these projections were used to produce addi-
tional features that were augmented to the original features to train the model in the target
language. An interesting part of their approach is to train the supervision model (e.g., SVM)
in the source and target languages simultaneously. This leads to a joint optimization for the
common space projections as well as the classifiers. The approach was tested on a text
classification task with the Reuters multilingual database and obtained good performance.
In another work [24], a linear projection was learned by optimizing a set of multi-lingual
classifier, each of which predicted the existence of the words of a bi-lingual word-pair. The
approach was tested on cross-lingual topic discovery and sentiment classification.
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Recently, word embedding becomes a hot topic [129, 130, 131, 132, 133]. Intuitively,
word embedding represents each word as a low-dimensional dense vector (word vector)
with the constraint that relevant words are located more closely than irrelevant words. This
embedding enables semantic computing over words, and provides new ways for mulitilin-
gual learning: if word vectors can be trained in a multilingual fashion, regressors/classifiers
trained on these vectors naturally apply to multiple languages.

A simple approach is to map word vectors trained in individual languages to a single
space. For example, in [134], it was found that a linear transform can project word vectors
trained in one languages to word vectors in another language so that relevant words are
put closely, in spite of their languages. This projection can be learned simply by some
pivot word pairs from the two languages. We extended this work in [135] by modeling the
transfer as an orthogonal transform. A more systematic approach was proposed by [136],
where different languages were projected to the same space by different projections, and the
projections were determined by maximizing the canonical correlation of the corresponding
words in the projected space. This approach requires one-to-one word correspondence,
which was obtained by aligned parallel data.

A potential problem of the above approaches is that the word vectors and projections are
learned separately. The approach proposed in [137] does not learn any projection, instead
the bi-lingual correspondence was taken into account in the embedding process. This work
was based on the neural LM model [129] and changed the objective function by involving
an extra term that encourages relevant words in different languages located together. The
relevance of words in different languages was derived from aligned parallel data.

In another work [138], the relevance constraint was employed at the sentence level. Word
vectors were aggregated into a sentence embedding, and relevant sentences were embedded
closely. This approach does not require word alignment and so can be easily implemented.
Additionally, this approach can be simply extended to document level models, for which
only document pairs are required, without any sentence-level alignment. This approach was
tested on a multilingual classification task.

A similar work was proposed by [139]. As in [138], only sentence pairs are required
in the learning; the difference is that the embedding leveraged both monolingual data and
bi-lingual data, and employd noise-contrastive training to improve efficiency. Good perfor-
mance was obtained in both cross-lingual document classification and word-level transla-
tion.

An interesting research that involves much ingredient of deep learning was proposed
by [30]. The basic idea is to learn high-level document features individually in each lan-
guage by unsupervised learning (i.e., mSDA in that paper), and then learn the correspon-
dence (transform) using parallel data. The raw and high-level features can be combined to
train the classifier in one language, and documents in another language can be transferred
to the rich language and are classified there. The idea of applying unsupervised learning to
learn high-level features is prominent, which may help remove noises in the raw data thus
leading to more reliable transform estimation. The approach was tested on several multi-
lingual sentiment classification tasks where the raw document feature was TF-IDF and the
high-level features were learned by mSDA. Good performance was reported.

4.2 Cross-domain transfer learning
Cross-domain transfer learning has two different meaning: when the domain refers to ap-
plications, then the difference is in the data distribution; when it refers to features, then the
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difference is in feature types or modalities, e.g., audio feature or image feature. We focus
on the feature domain transfer, which is relatively new and invokes much interest recently.
With the simplest approach, multi-modal features can be combined either at the feature
level or the score level. For example on the semantic relatedness task, [140] concatenated
visual and textual features to train multi-stream systems; in [141], the scores predicted by
multiple models based on different features are combined. A more complex setting involves
transferring knowledge between models built with heterogeneous features. Note that some
authors regard different languages as different domains, e.g., [30]. However, we focus on
transfer learning between different feature modalities.

An example is the work proposed in [25], where the authors used co-occurrence data to
estimate the correspondence between different features, i.e., image and text. The estimated
correspondence was then used to assist the classification task in the target domain, by trans-
ferring the target features to the source domain where a good classification model had been
constructed. The authors formulated this transfer process using a Markov chain and risk
minimization inference. The method was tested on a text-aided image classification task
and achieved significant performance improvement.

The common latent space approach was studied in [142], with the task of image seg-
mentation and labelling. The model was based on kernelized canonical correlation analysis
which finds a mapping between visual and textual representations by projecting them into
a latent semantic space.

Deep learning provides an elegant way for cross-domain transfer learning, with its great
power in learning high-level representations shared by multiple modalities [54]. For exam-
ple, in [62, 143], images and words are embedded in the same low-dimensional space via
neural networks, by which image classification can be improved by the word embedding,
even for classes without any image training data. [144] proposed a multi-modal neural
language modeling approach with which the history and prediction can be both text and
images, so that the prediction between multiple modalities becomes possible. In [145], an
RNN structure based on dependency-tree was proposed to embed textual sentences into
compositional vectors, which were then projected together with image representations to
a common space. Within this common space, multi-modal retrieval and annotation can be
easily conducted. The same idea was proposed by [146], though deep Boltzmann machines
were used in stead of DNNs to infer the common latent space.

4.3 Model transfer
Model transfer, which aims to learn one model from another, has not yet been extensively
studied in language processing. A recent work [147] studied a knowledge distilling ap-
proach on the sentiment classification task. The original classifier was a large neural net
with large word vectors as input, and a small network was learned in two ways: either us-
ing the output of the large network as supervision or directly transferring large word vectors
to smaller ones.

In a recent study [148], we show that it is possible to learn a neural model using super-
vision from a Bayesian model. Specifically, we tried to learn a document vector from the
raw TF input using a neural net, supervised by the vector representation produced by latent
Dirichlet allocation (LDA). Our experimental results showed that with a two-layer neural
network, it is possible to learn document vectors that are quite similar to the ones produced
by LDA, while the inference is hundreds of times faster.
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5 Perspective and conclusions
We gave a very brief review of transfer learning, and introduced some applications of this
approach in speech and language processing. Due to the broad landscape of this research
and the limited knowledge of the authors, only very limited areas were touched. Also, many
important contributions in the ‘history’ had to be omitted, for the sake of emphasis on more
recent directions in the past few years, especially deep learning. Even with such a limited
review, we can still clearly see the important role that transfer learning plays and how fast
it has evolved recently. For speech and language processing, transfer learning is essentially
important as both speech and language are diverse, imbalance, dynamic and inter-linked,
which makes transfer learning inevitable.

Transfer learning can be conducted in very different manners. It can be conducted as
a shared learning that learns various domains and tasks together, or as a tandem learning
which learns a model in one domain/task and migrates the model to another domain/task. It
can be conducted with a supervised way where labeled data are used to refine the classifier,
or an unsupervised way where numerous unlabelled data are used to learn better represen-
tations. It can be used to transfer instances, representations, structures and models. It can
transfer between different distributions, different features and different tasks.

Go back to the NIPS 95 workshop, where some questions were raised by the famous
researchers at that time. Two decades later, we can answer some of the questions, while
other remains mystery:
• What do we mean by related tasks and how can we identify them? It is still diffi-

cult to measure relatedness, particularly with the complex configurations of transfer
learning. However, we do know some possible metrics, e.g., the relatedness between
marginal and conditional distributions [6] in unsupervised feature learning, or rep-
resentation overlap in model adaptation [38]. Particularly, we now know that even
two tasks are intuitively unrelated (e.g., speech recognition and speaker recognition),
transfer learning still works by utilizing the fact that the tasks are unrelated [39].

• How do we predict when transfer will help (or hurt)? Again, it is not easy to find a
complete solution. However some approaches indeed can alleviate negative transfer,
e.g., [149, 38]. With deep learning, the risk of negative transfer seems substantially
reduced. For example, any data in related domains can be used to assist learning
abstract features, even they are sampled from a distribution different from the target
domain [23]. This is not the case twenty years ago.

• What are the benefits: speed, generalization, intelligibility,...? Seems all of these can
be improved by transfer learning.

• What should be transferred: internal representations, parameter settings, fea-
tures,...? We now know all these components can be transferred.

• How should it be transferred: weight initialization, biasing the error metric,...? All
these methods can be used, although it seems that the regularization view is more
attractive and it is related to modifying the objective function.

• How do we look inside to see what has been transferred? This question is more
related to model adaptation and the answer is model-dependent. For example with a
DNN model which is highly compact, it is not simple to investigate which part of the
model has been changed after adaptation.

Transfer learning has been widely studied in speech and language processing, particularly
for model adaptation. Recent advance in multilingual learning and heterogeneous feature
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transform demonstrates the power of transfer learning in a more clear way. Nevertheless,
compared to the very diverse methods studied in the machine learning community, appli-
cation of transfer learning in speech and language research is still very limited. There are
many questions remain unanswered, for example: can we learn common representations for
both speech, language and speaker recognition? Can we learn acoustic models for voiced
speech and whistle speech together? How about sign language? How to use large volume
of unlabeled video data to regularize speech models? How pronunciation models can be
used to regularize NLP tasks? How to involve heterogeneous resources including audio,
visual, language to solve the most challenging tasks in the respective research fields? How
to utilize the large amount of unlabeled data more efficiently in the big-data era? To solve
these problems, we believe collaboration among researchers who have been used to work
independently in their own areas is mostly required.
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