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1 INTRODUCTION

Building a language model usually requires a large amount of training data, which is burden-
some to obtain. And it is impractical to construct a language model that covers an entire
spoken language, including specialized and technical fields. When there are some words and
we don’t have the corresponding corpus, it’s impossible to recognize them for the word based
language model. We combine the class based language model and word based language model
using WFST(weighted finite state transducer) composition operation. The class we used in
our method is a specific named entity(such as address name, person name etc.) and we call
the composite language model as tag language model. We explore the relation between the
composition weight and other hyper-parameters. We test our method on a domain-specific
test set and our approach can dramatically improve the recognition rate of the low-frequency
or unseen words in the training corpus.

2 METHOD

We test our approach in the domain of recognizing address names. The main procedure is as
follows:

1. extract the low-frequency address names from training corpus and build a jsgf(JSpeech
Grammar Format) file1.

2. add tag to training corpus using the low-frequency address names and create a new
corpus.

1http://www.w3.org/TR/jsgf/
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3. compile the new corpus and the jsgf file respectively to G.fst and grammar.fst.

4. compose G.fst and grammar.fst to generate merged_G.fst.

5. construct HCLG using merged_G.fst.

We use NER(named entity recognition) to recognize the address names in the training corpus
and classify the low-frequency address names to a class named "ADDRESS". Then we add
some unseen address names to the class. We define the "ADDRESS" class by a rule in a
jsgf file. Later we use the low-frequency address names to tag the training corpus, that is
substituting the address name in trainning corpus with a "<address>" tag. A n-gram language
model is generated for class tokens using the tagged training corpus. Compiling the n-gram
language model and the jsgf file respectively to G.fst and grammar.fst. Fst compilation done,
we compose the two fsts to generate a merged_G.fst parameterized by the composition weight.
After the composition procedure, the merged_G.fst serves as a component of constructing
HCLG.

2.1 ADDRESS NAME RECOGNITION

We use the ltp sdk2 to recognize the address name in the training corpus. Extracting all the
address names in the training corpus using the ltp tool. After Counting and sorting the address
names by frequency, we set a frequency threshold and select the address names below this
threshold. We classify the selected address names to the "ADDRESS" class and add some
unseen address names to this class. Using the selected low-frequency address names and
unseen address names to construct a jsgf file. The form of the grammar file is as follow:

#JSGF V1.0;

grammar address_grammar;

public <address> = low_freq_address_1 | low_freq_address_2 | low_freq_address_3 | un-
seen_address_1 | unseen_address_2 | unseen_address_3;

In this file, line 1 is the JSGF version, and line 2 specifies the grammar name of the grammar
file. Line 3 is a rule named "<address>" defines the "ADDRESS" class. The preceding address
names of this rule is the low-frequency part, while the posterior part are the unseen address
names that we add according to our need.

2.2 TAG THE TRAINING CORPUS

The training corpus used relates with the area of telecom customer service, and it has a total
size of 64 MB and consists of about 1.4 million setences. We use the extracted low-frequency
address names to tag the training corpus. Traversing the training corpus and judging if a
sentence contains any low-frequency address name. If does, we would create a new sentence
with hit address name replaced by a "<address>" tag. Then we add the new sentences to the

2https://github.com/HIT-SCIR/ltp
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original corpus to generate a new corpus called tagged corpus. For example, if "Beijing" is
a low-frequency address name, and a sentence in corpus is "I live in Beijing", then a new
sentence "I live in <address>" is added to new training corpus. Following is an example:
low-frequency address name list:

Beijing

original training corpus:

I live in Beijing

tagged corpus:

I live in Beijing

I live in <address>

2.3 FST COMPILATION

We use the tagged corpus to train a 5gram language model using SRILM toolkit3. The 5gram
language model is then compiled to G.fst using OpenFst toolkit4.
We use sphinx_jsgfsg toolkit and OpenFst toolkit to convert the jsgf grammar file to grammar.fst.
Usage is as follow:

sphinx_jsgf2fsg -fsm address.jsgf address_grammar.address fsg.txt sym.txt

fstcompile –isymbols=sym.txt –acceptor=true < fsg.txt >grammar.fst

In the first step, jsgf format grammar file "address.jsgf" is converted to "fsg.txt", which is in text
format. In the meantime, a symbol table "sym.txt" of the jsgf file is generated. In the second
step, the text format "fsg.txt" is compiled to binary format "grammar.fst".

2.4 FST COMPOSITION

We compose G.fst and grammar.fst to generate a merged_G.fst. The fst composition procedure
is parameterized by the composition weight. When the composition weight is small, it’s more
likely to recognize the address names in jsgf grammar file. Usage is as follow:

./G_merge.sh merge.cfg

The G.fst and grammar.fst is specified in the configuration file "merge.cfg", as well as the
composition weight. The form of configuration file is as follow:

#tag label added to training corpus

target_label=’<address>’

3http://www.speech.sri.com/projects/srilm/
4http://www.speech.sri.com/projects/srilm/
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#composition weight of G.fst and grammar.fst

merge_weight=

#path of G.fst

source_G_big=

#symbol file path of G.fst

source_sym_big=

#path of grammar.fst

source_G_small=

#symbol file path of grammar.fst

source_sym_small=

#path of original lexicon

source_lex=

#the composition of G.fst and grammar.fst

target_G=

#generated new symbol file

target_sym=

#generated new lexicon

target_lex=

The G_merge.sh read the configuration file and generate three new files, merged_G.fst, a new
symbol file and a new lexicon. There are some special handlings we should do. First, we should
delete the item "<address> SIL" item in the new lexicon; second, we should delete the item
"#0" at the end of the new symbol file.

2.5 HCLG CONSTRUCTION

We use Kaldi toolkit5 to construct HCLG, and the input G is the merged_G.fst. The acoustic
model we used here is mdl_1400. The construction command is as follow:

sh kickoff.sh cfg hclg_output_dir acoustic_model_dir

cfg is the configuration file of constructing HCLG, the form of cfg is as follow:

5http://kaldi.sourceforge.net/
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#phone list

ph=

#arpa format or fst format language model path

lm=

#symbol file

sym=

lexicon file

lex=

In the baseline experiment, we use arpa format language model and don’t need to specify
the symbol file. But in the tag language model experiments, we use fst format language
model(lm=merged_G.fst) and assign sym with the new symbol file path and lex with the new
lexicon file.

3 EXPERIMENT

3.1 TEST SET

In order to test the perfomance of our method, we construct a test set. It contains 12 person’s
record of total 120 sentences. Each sentence contains a address name. The preceding 30
sentences have high-frequency address name in each sentence, and the middle 40 sentence
have low-frequency address name which is listed in the jsgf grammar file in each sentence,
while the posterior 50 sentence have address name that is unseen in corpus but added to the
jsgf grammar file. We add 10 unseen address names to the jsgf file, and each unseen address
name have 5 test sentences. We want to see whether our method can help us recognize the
low-frequency address names and the unseen address names on condition that don’t influence
the recognition of other words.

3.2 BASELINE

We set up a baseline experiment to compare with our method. We use the seed corpus to
train a arpa format 5gram language model. Using this language model to construct HCLG and
testing on the test set. The result is in table 3.1. In the baseline experiment, the word error is

Table 3.1: Result of baseline

WER Ins Del Sub 30_ER 40_ER 50_ER
20.66 [ 848 / 4104 ] 189 354 305 6 16 32

20.66%, 6 errors in recognizing the high-frequency address names, 16 errors in recognizing the
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low-frequency address names and 32 error in recognizing the unseen address names. Note
that there are 18 correct case when recognizing the unseen address name. The reason for
this result is that we add 2 long address names each contains several words to grammar file.
Although they don’t appear in training corpus, but each single word compose the long address
name appears in the training corpus.

3.3 TAG BASED LANGUAGE MODEL

We conduct 3 experiments to show our method works and to find the relationship between
the optimal composition weight and the address names number grammar file. In experiment
1, we extract 490 low-frequency address names from seed corpus, using these 490 address
names to tag the seed corpus, total 1369 sentences added to training corpus, combining the
490 low-frequency and 10 unseen address names in a grammar file. Using our method to
build several tag based HCLGs with different composition weight, and the result is in table
3.2. From the above table we can see that our method can largely improve the recognition

Table 3.2: Result of experiment 1

composition weight WER Ins Del Sub 30_ER 40_ER 50_ER
0.1 16.72 [ 686 / 4104 ] 264 230 192 8 3 5
0.3 15.42 [ 633 / 4104 ] 182 288 163 7 3 5
0.5 15.40 [ 632 / 4104 ] 172 300 160 6 4 7
0.6 15.28 [ 627 / 4104 ] 166 302 159 6 7 6
0.7 15.28 [ 627 / 4104 ] 147 313 167 6 8 7
0.8 15.38 [ 631 / 4104 ] 154 296 181 6 7 9
1.0 15.98 [ 656 / 4104 ] 169 291 196 6 8 12
2.0 19.08 [ 783 / 4104 ] 172 377 274 6 14 23

rate of low-frequency and unseen address names, especially when the composition weight
is small. But when the composition weight is smaller than a threshold, the WER is high. The
explanation for this phenomenon is that when the composition weight is small, it’s more likely
for the decoder to recognize other words as address names in the grammar file. When the
composition weight is high, the decoder is less likely to recognize the address names in the
grammar file. One extreme is that when the composition weight is very big, the result of our
method is same with baseline. There is a trade-off between the precision of low-frequency or
unseen address names and other words. In experiment 1, we find the optimal composition
weight is 0.6.

3.4 OPTIMAL COMPOSITION WEIGHT EXPLORATION

In order to find the relation between the optimal composition weight and the size of the
grammar file, we conduct experiment 2 and experiment 3.
In experiment 2, the grammar file is same with experiment 1. But we use 100 low-frequency
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address names to tag the training corpus, and add 165 sentences to corpus. The only difference
between experiment 2 and experiment 1 is the number of sentences containing "address" tag
in corpus. The result of experiment 2 is in table 3.3. In experiment 3, we use 490 low-frequency

Table 3.3: Result of experiment 2

composition weight WER Ins Del Sub 30_ER 40_ER 50_ER
0.01 17.57 [ 721 / 4104 ] 262 279 180 10 4 7
0.03 17.25 [ 708 / 4104 ] 257 277 174 8 4 7
0.05 16.84 [ 691 / 4104 ] 251 270 170 7 4 7
0.08 16.59 [ 681 / 4104 ] 269 234 178 6 5 8
0.1 16.50 [ 677 / 4104] 249 267 167 6 5 9
0.15 16.76 [ 688 / 4104 ] 244 274 170 6 6 11

address names to tag the training corpus and add 1369 sentences to corpus. But we use a
different grammar file. This grammar file contains 1280 address names, 500 address names
are from the grammar file in experiment 1 and remaining 780 address names are unseen in
corpus. The result of experiment 3 is in table 3.4. Comparing experiment 2 and experiment 1,

Table 3.4: Result of experiment 3

composition weight WER Ins Del Sub 30_ER 40_ER 50_ER
0.1 17.42 [ 715 / 4104] 251 257 207 8 3 8
0.3 15.74 [ 646 / 4104] 196 268 182 7 3 6
0.5 15.20 [ 624 / 4104 ] 162 297 165 6 4 7
0.6 15.11 [ 620 / 4104 ] 162 298 160 6 6 6
0.7 15.52 [ 637 / 4104 ] 158 301 178 6 8 7
0.8 15.30 [ 628 / 4104 ] 150 299 179 6 8 8
1.0 15.69 [ 644 / 4104 ] 130 355 159 6 10 8
1.5 17.37 [ 713 / 4104 ] 158 327 288 6 12 15

we can find that when we add more sentences containing tag to training corpus, the optimal
composition weight tends to bigger. Comparing experiment 3 with expriment 1, we can find
that the number of address names in the grammar file don’t influence the optimal composition
weight obviously.

4 CONCLUSION

We combine the class based language model and word based language model. We classify the
low-frequency address names extracted from the training corpus to a class ADDRESS and each
single word is a class, thus there are V + 1 classes(V is the vocabulary size). The class based
and word based language model is combined by fst composition guiding by composition
weight. The result of our experiment shows that using a appropriate composition weight,
the recognition rate of low-frequency and unseen words can be highly improved without
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obviously reducing the recognition rate of other high-frequency words. In addition, we explore
the relation between the composition weight and number of sentences added to corpus, as
well as the number of address names in the grammar file.
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