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Abstract

Poetry is a treasure in human culture for its beauty and creativity. Automatic
Chinese poetry is a challenging task in natural language processing which
represents computer intelligence and has attracted researchers’ attention for
many years. Attributed to the development in neural network, great
improvements have been achieved in recent years. Previous methods mainly
focused on the semantic aspects of the content while few paid attention to the
modeling of rhythm. The common way to maintain rhythm is to apply rules on
rhyme and tone to rule out unsatisfying words during decoding. However,
rule-based decoding not only sacrifices the semantic performances for poeticness,
but also requires human design of the rhymic and tonal rules which is lack of
flexibility. In this paper, we proposed a model for Chinese poetry rhythm, which
can learn the tonal patterns and generate poems with poeticness. This model can
balance between semantic and poetic aspects. In addition, the poeticness of the
generated poems can be controlled manually.
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1 Introduction
Poetry is one of the most fascinating form of human language and illustration

of human intelligence, and it is a popular form of literature in all cultures and

languages. Chinese ancient poetry is important for its aesthetic value and its social

functions.

Pragmatically, quatrain is one of the most popular class of Chinese poetry. Ac-

cording to the length in each line, quatrain can be classifies as Qiyan (7 words per

line) and Wuyan (5 words per line). A quatrain is fascinating for its fluctuation in

rhythm. Concretely, we describe the rhythm in two aspects: rhyme and tone. The

rhymic pattern requires that the last character of some lines should be in the same

rhyme. The tone rule describes the tone category that the characters should possess

at specific positions. More specifically, a character may belong to either Ping tone

(level tone) or Ze tone (downwards tone). The tone of a character at some partic-

ular positions depend on each other, leading to tonal patterns. Essentially, tonal

patterns reflect the musical esthetics of poems.

We focus on automatic Chinese poetry generation in this paper. In recent years,

Chinese poetry generation has received much attention from researches. Tradition-

ally, rule and template based methods [1], statistical methods [2] were widely used.

More recently, deep neural methods [3] are proposed and succeed in generating flu-

ent and coherent poems, and many proposals [4] [5] [6] [7] in model structure have

been made to promote the novelty and creativity of the poem.
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In spite of the promising results made by aforementioned models, there are still

space for promotion. Most of existing approaches focus on modeling the semantic

content of characters, and rhythm regularizations are imposed simply by rule-based

character selection during decoding, leading to sacrifice in semantic coherence and

fluency. To be more specific, as it did in [8] and [6], several tone templates are set

manually according to knowledge in Chinese ancient poetry. For example, a tone

template for a Qiyan quatrain looks like zzppzzp ppzzzpp ppzzppz zzppzzp, in which

p and z denote Ping tone and Ze tone respectively. When generating a character at

a particular position, the tone of each candidate is compared with the template one

by one according to their probability. If the character does not meet the requirement

of the template, the next candidate with the highest probability will be considered,

until rhyme is processed similarly. We call this method hard constraint.

Hard constraint may lead to suboptimal generation. First, it lacks flexibility to

use tonal templates. Although some ancient poems strictly follow the templates

proposed by the ancient poetry guideline Ping Shui Yun, it is too doctrinaire, and

our human poem dataset shows that no more than 20% poems follow the templates

exactly. Second, hard constraints give tone and rhyme the first priority, but in fact,

many high-level human poets sacrifice tone rule for better semantic expression. This

inspired us to find an equilibrium between semantic meaning and rhythm rules,

allowing a few exceptions in rhythm rules when a candidate is highly advantageous

in semantic expression, hence improving the overall performance of the generation.

In this paper, we propose a soft constraint rhythm model to describe the rhythm

requirements in Chinese ancient poems. The model gives a prediction on tone at each

decoding step according to a learned tonal pattern. The predictions are added as a

score to the decoder output, hence the candidate word probabilities are regularized

by the prediction scores. Different from hard constraint, this method allows the

inconsistence on rhythm if the semantic probability is high, hence it is called soft

constraint. The essence is that we design a tonal coherence matrix to describe the

tonal dependencies between characters. This matrix is learned from data, hence

describes the probabilistic patterns used by human poets, rather than pre-defined

templates. Our model has two advantages: (1) the tonal pattern is learned from

data, rather than manually designed; (2) the suggestion on the tone is given in the

form of rhythm scores that can be combined to the semantic outputs, allowing the

model to consider both semantic coherence and rhythm accordance. Because of (1),

our model is universal to many other literature genres, like Chinese Song Iambics,

which has too many templates to design manually. Due to (2), our model can assign

different weights to semantic and rhythm aspects according to the preference of

users, and the hard constraint is actually a special case of our model. What’s more,

our model can also be used in any state-of-the-art architectures to further promote

their overall performances.

Our contributions can be summarized as the following:

• First proposed a rhythm model that offers soft constrains on rhythm patterns.

• The rhythm model reveals inner rhythm patterns in poems (to be described

in Section IV).

• Our model achieves success on promoting the overall performance of state-of-

the-art models.
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2 Methods
2.1 Basic Sequence-to-sequence model

The most popular architecture for poem generation is the sequence-to-sequence

framework equipped with the attention mechanism, originally proposed for neural

machine translation. This model can be described as the following. We use X =

(x1, x2, ..., xTx) as the input sequence for the encoder, Y = (y1, y2, ..., yTy ) as the

output sequence of the decoder. The encoder is based on a bidirectional RNN with

GRU nodes. The input of the encoder is the sequence of the embeddings of the

characters of the topic words. ht represents the hidden state of the encoder at step

t, and it is updated by ht = GRUenc(xt, ht−1). The outputs of the RNNs of the

forward and backward directions are concatenated, i.e., ht = [
←−
ht ;
−→
ht ].

The decoder is a single directional GRU. At each decoding step, the hidden state

st is updated by st = GRUdec(yt−1, st−1). The decoder accepts this hidden state

and a context vector ci computed by the output of encoder. The context vector can

be described as the following:

eij = score(si, hj),

αij =
exp(eij)∑Tx

k=1 exp(eik)
,

ci =

Tx∑
j=1

αijhj .

The output of the decoder at the t-th step can be calculated by:

ot = Wstanh(Wc[ct; st]),

p(yt|y1:t−1, x) = softmax(ot).

In the implementation, we use key words as the input sequence and the whole

poem as the output. The vocabulary involves high-frequency characters. That is,

key words are firstly represented as a character sequence which are further converted

into a sequence of embeddings. The decoder generates one character at each time

step. Note that this basic sequence-to-sequence model focuses on semantic coherence

and does not involve any rhythm knowledge.

2.2 Rhythm model

We embed a tone by a 1-dimensional vector, with [−1] indicating Ze and [1] indi-

cating Ping. A rhyme is embedded by a 16-dimensional one-hot vector, since all the

rhymes can be classified into 16 classes. We suppose that the tone of a position is

determined by the tone of all the previously decoded characters, and the rhyme of

the last character in a line is determined by the rhyme of all the last characters in

previously decoded lines. So we define S = (s1, s2, ..., st−1) as tone embedding of

the decoded sequences.
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Figure 1 Rhythm Model

Then we define a tonal pattern matrix Mtone. The dimension of Mtone is 28*28

(taking Qiyan as an example, which contains 28 characters in a poem with 7 charac-

ters in each line), the element mij is the contribution of the i-th decoded character

when generating the j-th character in the poem. If mij is a positive/negative value,

it means the j-th character is likely to have the same/opposite tone as the i-th

character.

At each time step, it gives a tone prediction. The tone prediction is calculated by

the linear combination of tone embedding of all decoded characters. The weights of

linear combination comes from a row in tonal pattern matrix.

scoretone(st|s1:t−1) =

j=t−1∑
j=0

mtjsj ,mtj ∈Mtone

The positive/negative value of scoretone indicates the likelihood of Ping/Ze tone.

The scores are computed for all characters in the vocabulary, and the results are

used as regularization terms added to the basic sequence-to-sequence model output

that focuses on the semantic coherence. The final output can be written by:

o′(yt|y1:t−1, x) = w1o(yt|y1:t−1, x)+

w2scoretone(st|s1:t−1)Vtone

p(yt|y1:t−1, x) = softmax(o′),

where Vtone is the embedding matrix of tone, and w1 and w2 are coefficients that

balance the semantic and rhythmic parts.

The structure of the whole model is shown as Fig. 1.

3 Experiment
In this section we introduce our dataset used for experiments, experiment settings,

baseline models as well as the evaluation metrics.
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3.1 Dataset and configuration

The dataset used in this experiment contains 1031,000 different Chinese poems.

Among which 370,000 are ancient poems while the rest are poems written by modern

poets. All of the poems are quatrains, either Qiyan (7 characters per line) or Wuyan

(5 characters per line). The ratio of the size of the training set, validation set and

test set is 8:1:1.

During training, the keywords are extracted from the training poems, with one

keyword extracted from each line in a random way. Using this method, a single poem

can generate several keywords-poem pairs. The experimental results demonstrated

this random sampling approach can greatly improved the overall performance in

poem generation.

The character embeddings are pre-trained on a large out-of-domain data, where

the dimension is set to be 200. The number of hidden units of the GRU layer is

set to be 500, for both the encoder and decoder, and the batch size is set to 80.

AdaDelta is used as the optimizer, with the same settings as in [9].

3.2 Evaluation metrics

Rhythmic performance. We propose a compliance score to evaluate rhythmic

performance. Compliance score is defined as the tone accuracy and rhyme accuracy

according to the rhythm rule. We use 2 templates as the gold standard according

to the ancient Chinese poem guideline Ping Shui Yun: 0p0z0p0 0z0p0z0 0z0p0z0

0p0z0p0 and 0z0p0z0 0p0z0p0 0p0z0p0 0z0p0z0, in which p/z denotes Ping/Ze tone,

0 denotes either Ping tone or Ze tone. Tone accuracy is defined as the percentage

of generated poems that meet the gold standard. The poeticness is defined formally

as follows:

Compliance = Accuracytone

Semantic performance. Previous research [5] [7] [10] used BLEU score as the

metric for objective evaluation. However, this metric, as [11] pointed out, is devi-

ated from human evaluation. According to [3], we adopt the following subjective

metrics: fluency(if the sentences make sense in syntex), coherence(if the theme re-

main the same among different sentences), meaningfulness(if the sentences convey

much information and contain few function words) and poeticness(if the poem has

artistic beauties). Each score ranges from 1 to 5. We invited experts to rate the 100

poems each model for comparision.

Besides, language model (LM) score serves as an supplement of the human eval-

uation. This is inspired by [11], in which language model is used as a reinforcement

learning reward to evaluate fluency. Formally, given a line of a poem Li, the n-gram

language model probability Plm(Li) indicates the likeliness of the presence of the

line in corpus that is used to train the language model. The higher the probability,

the more well-formed the line is. The LM score of a poem is defined as the average

over all lines:

LM =
1

n

n∑
i=1

Plm(Li).
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Table 1 Poetry generation performance

Rhythmic Semantic
Compliance F luency Coherence Meaningfulness Poeticness Overall LM(×10−10)

Basic 0.306 2.2 2.5 1.6 2.1 2.1 3.81

Basic+rule 1 3.6 3.1 2.5 2.9 3.023 1.55

Soft 0.408 3.5 3.6 2.9 3.0 3.25 3.54

Soft+rule 1 3.0 3.5 2.6 3.0 3.025 3.00

Jiuge 0.549 - - - - - -

Figure 2 Tone Accuracy

3.3 Baseline systems

We compare the proposed rhythm-augmented model (Soft) with a number of base-

lines: GT, the ground truth, i.e., the human written poems; Basic, the basic

sequence-to-sequence model with attention described in section II.A; Basic + rule,

adding rhythm rules to the basic model; Soft + rule, rhythm-augmented model

applied with hard constrain. Jiuge, a state-of-the-art model in Chinese poetry gen-

eration.

4 Results and analysis
As we can see, Soft performes better than all other models, including the state-of-

the-art model Jiuge.

4.1 The balance between rhythmic and semantic performance

As demonstrated in Tab. 4, the tone accuracy of Soft are both higher than Basic.

The result proves that the rhythm model is effective to improve tonal compliance

comparing to basic model when no explicit rhythm rules are applied and has success-

fully learned tonal patterns from the data. Meanwhile, the semantic performances

remain good.

We did further experiments to explore how the rhythm restriction can be con-

trolled manually. We changed the coefficients w2 : w1 (the sum of w1 and w2 remains

1) to see the changes in tone rhythmic and semantic performances. To implement
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Figure 3 LM score

large scale experiments, here we use a small dataset that is extracted from the orig-

inal dataset, consisting 10,000 poems. To simplify the evaluation procress, we only

use LM score as the evaluation of semantic performance.

First, we compare Soft and Basic to show how tone is controllable by the coefficient

w2. Using different w2 in training and generation can change the tone accuracy. As

shown in Fig. 2 and Fig. 3, when w2 for training matches w2 for generation, when

increasing w2, tone accuracy tends to increase and LM score tends to decrease, as

shown by the red dot line. For all w2, tone accuracy is higher than Basic model.

This shows the effect of rhythmic model. While w2 for training and for generation

does not match, tone accuracy increases from 0 to 1, and LM score decreases when

gradually increasing w2 in generation.

It is interesting that for all w2 in training, when w2 = 0 in generation, tone ac-

curacy is 0 and LM score is relatively high. From this result, it is reasonable to

claim that the sequence-to-sequence model and the rhythmic model are able to

work on different tasks seperately, and this seperation helps to promote on both

tasks. This reveals the essence of our rhythm model, multi-task learning. Therfore,

this phenomenon can be explained that when w2 = 0 in generation, only the basic

sequence-to-sequence model is working, and it has good performance on learning

semantic pattern, ignoring rhythmic pattern. So LM score is higher than (or compa-

rable to) Basic model, while tone accuracy is almost 0. Attributed to the multi-task

learning, it is able to find some specific configurations that has better performances

than Basic both semantically and rhythmically.

In addition, we compare Soft and Soft + rule to demonstrate how Soft prevents

rule harm the performance. A generation example is shown as Fig. 4. In the second

line, the word Bi (close) is changed to Chan (dhyana) when applying Basic + RM.

Although it breaks the tonal rule at this position, it has some connotation of Bud-

hism, which lively described the scene. While the word Bi does not have the same

effect aesthetically. It is reasonable to select the word Chan in Soft. The probability

o(yt|y1:t−1) of Chan calculated from sequence-to-sequence model is relatively high,
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showing that Chan is an appropriate word at this position. The Soft + rule model

rules out this candidate because of its non-compliance on tone. However, Soft only

gives it a punishment. Since the probability is high, the punishment is balanced

out. This example shows how rhythm model keeps a balance between semantic and

rhythmic performances.

Figure 4 Poem example

4.2 Tonal patterns for poetry

The tonal pattern is visualized as Fig. 5. The color indicates the dependencies be-

tween different position when predicting tone. In Fig. 5, there are 28 small pictures,

each for a single position. The i-th picture shows the tone dependency when predict-

ing the i-th character. This figure shows some interesting patterns. For example,

the fourth character in each line largely depends on the second character in the

same line, and the sixth character mainly depends on the second character and the

fourth character in the same line and all the previous lines. The last character in the

fourth line depends on the last character of the second line. Besides, the first, third,

fifth characters show more ambiguous dependency than the second, fourth, sixth

character in each line. These features are consistent with the rhythm rule that only

the second, fourth and sixth characters need to be regularized in terms of tones.

In summary, the result demonstrated that the pattern matrix is a good represen-

tation of rhythm patterns in Chinese poetry generation.

5 Conclusion
In this paper, we proposed a rhythm model for Chinese poetry generation. The

model can learn rhymic an tonal patterns from data. These learned patterns can

provide a soft constraint on rhythm, thus offers a good trade-off between semantic

coherence and rhythm aesthetics. Experiments showed the rhythm model outper-

forms the baselines not only on rhythmic and tonal compliance. Moreover, since

the semantic and rhythmic performances are well balanced, the overall quality of

generated poems is improved. Analysis also reveals that pattern matrix is a good

structure to represent the rhythm patterns of Chinese poems.
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Figure 5 Tonal pattern

Note how the caption is centered in the column.
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