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Details of the model

1. A context bi-LSTM :

2.Cross-entropy loss:
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t:POStag a:log frequency label




Overall results
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2.The bi-LSTM tagger with only word embedding
falls short, outperforms the traditional taggers

only on 3 languages.

3. The model using characters alone (c) works
remarkably well, it improves over TNT on 9
languages.

4.The combined word+character representation
model is the best representation.
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OO0V tokens, especially for languages like
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(PLOYGLOT : The data size is more than 10,000
articles for every language on Wikipedia and each
language's vocabulary will contain up to 100,000
words)
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Rare words
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Figure 2: Absolute improvements of bi-LSTM
(1 + &) over TNT vs mean log frequency.

1. Especially for Slavic and non-Indoeuropean languages, having
high morphologic complexity, most of the improvement is
obtained in the Zipfian tail.

2. Rare tokens benefit from the sub-token representations.



Data set size

Indosuropean non-ndoeuropean
1

1. TNT is better with little data, bi-
LSTM is better with more data, and
bi-LSTM always wins over CRF.

\
\

" o0 L] 1000
semances "

2. The bi-LSTM model performs __ Germanic Romance
already surprisingly well after only - " -
500 training sentences. / /—

3. For non-Indoeuropean
languages it is on par and above

the other taggers with even less N / . //’,

data (100 sen-tences). This shows :

that the bi-LSTMs often needs ‘ _ .
more data than the generative S e o S
markovian model, but this is

definitely less than what we

expected.
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Label noise

1. By artificially corrupting training labels.

2. Our initial results show that at low noise
rates, bi-LSTMs and TNT are affected
similarly, their accuracies drop to a similar
degree.

3. Only at higher noise levels (more than 30%
corrupted labels), bi-LSTMs are less robust,
showing higher drops in accuracy compared
to TNT
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