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Abstract

Training a language model (LM) from scratch with a large database is very
time-consuming. It is therefore attractive to adapt a well-trained LM to meet a
new and specific domain. Most of modern automatic speech recognition (ASR)
systems involve a static decoder that relies on a pre-compiled finite state
transducer (FST), which in nature does not support LM adaptation. A possible
solution embeds one or several domain-specific grammar FSTs in a
domain-independent class-based n-gram LM (CNLM) FST. Current researches
conduct the embedding on-the-fly in the recognition process. This dynamic
embedding offers great flexibility and quick adaptation; however, it is suboptimal
in terms of both accuracy and efficiency, due to the lack of graph reoptimization
after embedding.

In this paper, we propose a semi-dynamic LM embedding approach, which
performs the FST embedding offline and optimizes the resultant graph by
standard FST operations, especially graph minimization and weight pushing. This
offers a more compact and well-conditioned decoding graph than the dynamic
embedding. We tested the proposed method with a large scale ASR task, and
found that it can significantly improve the recognition performance on
low-frequency and unseen words.

Keywords: speech recognition; language model; finite state transducer; graph
embedding

1 Introduction
Automatic speech recognition (ASR) by machine has been a goal of research for

decades [1]. The language model (LM) is one of the key components in ASR for

providing syntactic and semantic constrains. Due to its predominant importance,

modern ASR systems usually involve a strong LM that is trained with a very large

text corpus, e.g., more than billions of words. The most popular language modeling

approach is based on word n-grams, which predicts the probability of a word given

its history by taking account of the previous n-1 words only. The training process

starts from text tokenization and word normalization, and then proceeds to count

the n-gram statistics, by which the n-gram LM is construed [2, 3].

A critical challenge of the current n-gram LM paradigm is that the probability

estimation for low-frequency words is highly unreliable. On one hand, there are

limited n-gram counts for low-frequency words in the training data, resulting in

little evidence for these words in model training. On the other hand, the n-gram

modeling is based on empirical probability estimation (based on n-gram counts),

which itself is unreliable for low-frequency events. More seriously, the number of
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words of a language is generally very large and new words are invented every day.

It is impossible for a LM to cover all existing words, not to even mention the words

unknown at present. Taking address names as an example: most of address names

are infrequent and new address names are invented every day. Ironically, addresses

that are of low-frequency or new are not necessarily unimportant, particularly when

we focus on a specific domain that is different from the one from which the training

data is collected. We therefore encounter two different but related challenges: (1)

How to give a reliable probability estimation for low-frequency words, including

zero-frequency words. (2) How to adapt a well-trained LM to a specific domain for

which new words need to be added and probabilities of low-frequency words need

to be re-estimated.

In order to meet the first challenge, a well-known approach involves various

smoothing techniques such as back-off [4] and discount [5, 6]. By this approach,

a proportion of the probability mass of high-frequency words is relocated to low- or

zero- frequency words, and high-order estimation falls back to low-order estimation.

Another approach is to share probabilities among similar words, so that words of

low-frequency can be estimated in a more reliable way by borrowing the statistical

information from high-frequency words. A well-known method of this approach is

the class-based n-gram LM (CNLM) [7], which groups words into classes according

to certain similarity measure, and builds a CNLM by replacing the member words

of a class by the tag of the class. Once the CNLM has been built, the probability

of a word in the class can be computed as the product of the class probability in

the CNLM and the word probability in the class.

Interestingly, the CNLM method can be used to tackle the second LM adaptation

problem as well. In fact, since the probability of a word has been decomposed into

two components, it is possible to adjust the class member probability according

to the target domain while keeping the CNLM unchanged. It is also free to add

new words into the class and assign appropriate member probabilities to them. An

interesting extension of the classical CNLM is to allow complex statistical structures

in the class, e.g., a stochastic grammar [8].

Most of modern ASR systems are based on finite state transducer (FST) [9].

Specifically, the n-gram LM is compiled into a word-based FST where the n-gram

scores are assigned to the transitions. By the FST representation, the decoding is

implemented as a simple graph search. Typically, the n-gram FST is compiled off-

line, which means the decoding graph is static and does not support adaption. The

idea of CNLM has led to an interesting solution for this problem, which decomposes

the decoding graph into a CNLM FST which is general and static and a class FST

that represents domain-specific knowledge, e.g., a list of named entities or a simple

grammar. In decoding, the class FSTs are embedded in the CNLM FST, forming a

domain-specific search graph. This FST embedding approach has been investigated

by many researchers to offer quick domain-specific or application-specific adapta-

tion [10, 11, 12, 13, 14, 15].

Most of the current FST embedding methods are dynamic, which means the class

FSTs are embedded in the CNLM FST dynamically when performing the decoding.

This offers quick on-the-fly adaptation and supports embedding large classes. How-

ever, this approach is suboptimal in terms of both efficiency and accuracy, due to the
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lack of graph re-optimization after embedding. Particularly, the lack of weight push-

ing leads to less effective beam search and hence degraded recognition performance.

This paper proposes a semi-dynamic embedding approach which does not seek for

on-the-fly adaptation; instead, we are interested in an off-line adaptation which is

not necessarily as flexible as the dynamic embedding but produces more compact

and optimized search graphs. This approach keeps the CNLM FST unchanged and

modifies the class FST according to the specific domain or application. The class

FST is then embedded in the CNLM FST, which is followed by several optimiza-

tion steps, e.g., determinization, minimization and weight pushing. Compared to

the dynamic embedding approaches, the semi-dynamic embedding does not provide

realtime adaption, however the resultant search graph is more compact and optimal

for beam search, leading to faster decoding and better performance. This is specif-

ically suitable for the server-side deployment where the domain-specific knowledge

needs to be updated regularly but not has to be on-the-fly, and speed and accuracy

are more important than instant LM adaptation.

The remainder of this paper is structured as follows. Section 2 discusses relevant

works, and our methodology is described in section 3. Section 4 presents the exper-

iments and Section 5 concludes the paper. The embedding tool used to conduct the

experiments in the paper is publicly available[1].

2 Related Work
The CNLM has been studied in many applications, such as named entity identifica-

tion [16], machine translation [17], and speech recognition [7, 18, 19, 20]. Typically,

the CNLM offers better performance than the word-based LM when the lexicon is

huge [18, 19] or the training data is limited [7].

In [8], the conventional CNLM was extended by allowing classes to be specified

by stochastic context-free grammars (SCFGs). An estimation-maximization (EM)

algorithm was employed to train the model. In [10], the authors described an inte-

grated LM where a general model linked a couple of local models. Each local model

corresponded to a particular class and was trained on a subset of the training

data. The models were represented in the form of weighted finite state automa-

tons (WFSAs). Similarly, a unified model was proposed in [11], which incorporated

domain-specific context-free grammars (CFGs) into a domain-independent n-gram

model. This unified model can improve generalizability of the CFG and specificity

of the n-gram.

More relevant works are [12, 13, 14, 15]. They are all based on FSTs. The approach

proposed in [12] allowed for dynamic sub-grammars to be spliced into the main

grammar on-the-fly, while preserving the dependency between neighboring words.

The expansion of a sub-grammar was deferred until the corresponding sub-grammar

transitions were encountered during decoding. [13] explored a unified framework

that combined the benefits of grammars, n-gram LMs, and class-based LMs based

on FSTs. They built a parallel model which was a weighted ‘union’ of grammars

and n-gram LMs as well as a hierarchical model which was similar to the class-based

LM, with the principal difference being that the classes may change their contents

on-the-fly. [14] described an FST-based framework to handle dynamic vocabulary

[1]http://cslt.riit.tsinghua.edu.cn/resources.php?Public%20tools



Yuan et al. Page 4 of 15

in ASR. The proposed framework possessed advantages of low memory usage and

low computation demand in vocabulary adaptation, due to the efficient composition

algorithm the authors proposed and the dynamic vocabulary scheme. More recently,

[15] introduced a method which embedded grammars in CNLM using a transducer-

nesting technique during speech decoding.

All the above FST-based approaches concentrate on dynamic vocabularies/grammars

and embed the class FSTs on-the-fly when performing decoding, and so can be

called ‘dynamic embedding’. An advantage of this approach is that the class FSTs

are embedded in the CNLM on demand. In other words, the class FSTs are tra-

versed only when necessary in decoding. This avoids the expensive cost in memory

usage and computation in conventional static embedding that expands all the class

transitions off-line. A disadvantage associated with the on-demand embedding, how-

ever, is that the FST optimization techniques (e.g., determinization, minimization,

weight pushing) cannot be applied, leading to a suboptimal search graph that is

less effective in beam search. Additionally, dynamic embedding requires extra time

for FST compilation, particularly if contexts are considered in the embedding.

We argue that the dynamic embedding approach is suitable for client-side ap-

plications, such as a personal voice assistant, for which the vocabulary may vary

every day. However, for a service-side deployment, vocabularies and grammars do

not vary that much for a particular domain, and speed and accuracy are more

concerned. In this scenario, the semi-dynamic embedding proposed in this paper is

more appropriate. Specifically, we follow the idea of FST-based CNLM but expand

all the class transitions off-line, and optimize the expanded FST by standard FST

optimization operations. To avoid the explosive cost in memory usage and computa-

tion, a context-share strategy is employed. This approach is useful for constructing

domain-specific LMs or updating vocabularies for a large-scale ASR service. More

details will be discussed in Section 3.

3 Semi-dynamic graph embedding
This section presents the semi-dynamic embedding approach. We start from intro-

ducing the FST architecture in speech recognition and then describe the method-

ology. The important design details will be highlighted.

3.1 FST in speech recognition

Most of the modern ASR systems are based on FSTs. An FST provides a graphical

representation for a statistical model that maps one symbolic sequence to another,

e.g., a lexicon model that maps phone sequences to word sequences. In speech

recognition, all the acoustic and linguistic models can be represented by FSTs,

including: the hidden Markov Model (HMM) that maps phone states to context-

dependent phones (H), the decision tree that maps context-dependent phones to

context-independent phones (C), the lexicon that maps context-independent phones

to words (L), and the LM that assembles words into sentences (G). These four FSTs

are composed to form a compositional FST that maps from low-level HMM sates

to high-level sentences, i.e., G = H ◦ C ◦ L ◦G.

The unified FST representation greatly simplifies the decoding algorithm, since

the complicated data structures previously designed to manipulate the multiple
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acoustic and linguistic models and resources are not required any more. In fact, the

decoding process can be implemented as a simple graph search [9, 21]. A particular

advantage of the FST representation is that standard FST optimization operations,

such as determinization, minimization and weight pushing can be simply employed

to produce a highly compact decoding graph (G). Especially, the weight pushing

operation redistributes the LM scores so that they can be employed as early as

possible. This is analog to the well-known LM look-ahead technique [22] and has

been demonstrated to be rather effective for pruning unlikely paths in decoding [23].

We propose two semi-dynamic embedding approaches: the first approach, denoted

by ‘G embedding’, embeds the class G in the CNLM G and then composes the re-

sultant G with other components to form the decoding graph; the second approach,

denoted by ‘HCLG embedding’, constructs the class HCLG and the CNLM HCLG

respectively, and then embeds the class HCLG in the CNLM HCLG to form the

decoding graph. The G embedding performs FST optimization after the embedding,

while the HCLG does not perform additional optimization after the embedding, due

to the constraint on memory usage and computation. Therefore, the G embedding

tends to produce more ‘optimal’ decoding graphs, however the HCLG embedding

is much more efficient and suitable for on-the-fly adaptation, which is similar to the

dynamic embedding though the class HCLGs are compiled off-line.

3.2 G embedding

The G embedding approach embeds class FSTs in a CNLM FST on the G level.

The class can be simply a list of domain-specific words, or a more complicated

grammar. In both cases, the class can be represented by a CFG and thereof is

converted to an FST. In our study, CFGs were written in the format of JSpeech

Grammar Format (JSGF)[2], and we used the Sphinx toolkit[3] to convert CFGs

to finite state machines (FSMs). The OpenFST toolkit[4] was then harnessed to

compile an FSM to an FST (class G). For the CNLM, it can be converted to an

FST by treating each n-gram history as an FST state, and the n-gram probabilities

as the weights associated with the FST transitions. The Kaldi toolkit [24] was used

to conduct the n-gram to FST conversion in this work.

Figure 1 exemplifies a simple CNLM G that involves just two sentences, ‘like

<addr> awfully ’ and ‘best <addr> hotel ’, where ‘<addr>’ is a class tag representing

possible address names. Figure 2 illustrates a simple example of the class G, which

involves three words (‘Paris’, ‘Las Vegas’, ‘London’). Note that the class in this

simple example involves a list of words, and the words are assigned the same weight.

More complex grammars and more informative weight distributions are possible and

more useful in practice.

When embedding the class G in the CNLM G, the class G should substitute for

all the class transitions in the CNLM G. In other words, a full expansion for the

CNLM G transitions labelled by the class tag. This approach, however, is extremely

costly as the class transitions may occur many times in the CNLM G, leading to

unaffordable memory usage and processing time. We therefore take a context-share

[2]http://www.w3.org/TR/jsgf/
[3]http://www.speech.cs.cmu.edu/sphinx
[4]http://www.openfst.org
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0

1like/2.0015

2

best/3.3081

4
<addr>/0.2231

5
<addr>/0.9079

3

awfully/0.4055

hotel/1.7638

Figure 1 A simple CNLM G FST.

0

1Paris:Paris/1.0985

2
Las:Las/1.0985

3

London:London/1.0985
4

<eps>:<eps>

5
Vegas:Vegas

<eps>:<eps>

<eps>:<eps>

Figure 2 A simple class G FST involving three address names.

strategy that links the the leaving and entering states of a class transition to the

starting and existing states of the class G, respectively. The new link-in and link-

out transitions are labelled as silence, which implies that the word context that the

class transition appears is ignored. An example is shown in Figure 3, which embeds

the class G shown in Figure 2 in the CNLM G shown in Figure 1.

0

1like:like/2.0015

2

best:best/3.3081
6

TAG0:<eps>/0.2231

TAG1:<eps>/0.9079

7Paris:Paris

8
Las:Las

9

London:London
3

4 awfully:awfully/0.4055

5

hotel:hotel/1.763810

#0:<eps>

11
Vegas:Vegas

#0:<eps>

TAG0:<eps>

TAG1:<eps>
#0:<eps>

Figure 3 The G FST that embeds the class G (Figure 2) in the CNLM G (Figure 1).

For a clearer presentation, we define an FST as its starting state a, exiting state

z and the transitions it involves, e.g.,

G = (a, z,Ξ = {ei; i = 1, 2, ..., I}),

where ei = (si, ti, vi, li, ri) represents the ith transition with the leaving state si,

entering state ti, weight vi, input label li and output label ri, and I is the total

number of transitions in G. Note that we have assumed a single exiting state, which

does not reduce the generability of the definition as we can always add an extra

state and link all exiting states to it if there are many. The embedding algorithm

is presented in Algorithm 1.

In Algorithm 1, class transitions labeled by the class tag c are searched for in the

CNLM G. An important detail in the embedding process is that the the state IDs

of the class G need to be mapped to the ID space of the CNLM G. This is achieved

by finding the maximum state ID Dn in the CNLM G, and then add the value to

all the state IDs of the class G.

The embedding weight w is used to balance the probability traversing into the

class G. Note that the FSTs in Figure 1-3 are in the log semiring, which means that

the weights of transitions in the FST are the logarithm of the probabilities obtained
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Algorithm 1 G embedding algorithm
Input: CNLM G FST: Gn = (an, zn,Ξn); class G FST: Gc = (zc, zc,Ξc); class tag c; class weight w.
Output: Embedded G FST: Gm = (am, bm,Ξm)

am=an; zm=zn; Ξm={}
Dn = max(sni , v

n
i : i = 1, 2, ...In) % maximum state ID in Gn

for all eci IN Ξc do
eci = (Dn + sci , D

n + tci , v
c
i , l

c
i , r

c
i ) % modifying the state id in Gc

Ξm = Ξm ∪ {eci} %add it to Gm

end for
ac = ac + Dn % the starting state of Gc zc = zc + Dn % the exiting state of Gc

k = 0
for all eni IN Ξn do

if lni = c then
ei = (sni ,an,w+vni ,TAG{k},sil) % add link-in transition
eo = (zc,tci ,0,TAG{k},sil) % add link-out transition
Ξm = Ξm ∪ {ei,eo}
for all eci IN Ξn do

e = (Dn + sci , D
n + tci , v

c
i , l

c
i , r

c
i ) % add transitions in Gn to Gm

Ξm = Ξm ∪ {e}
end for
k = k + 1

else
Ξm = Ξm ∪ {eni }

end if
end for

from the CNLM. Therefore the embedding weight w added to the class transition

weight of the CNLM G plays the role of a prior probability ew for transiting into

the class G. For the embedded G in Figure 3, w is set to zero so the weight from

state 1 to 6 is the same as the weight from state 1 to 4 in Figure 1 (both 0.2231).

Finally, the auxiliary input tags TAG{k} are used to label the new link-in and link-

out transitions. These new tags guarantee that the embedded G is determinizable,

according to the FST twin property [21]. These auxiliary tags are added into the

lexicon and their pronunciations are set to silence.

Once the embedded G FST has been established, it is composed with other com-

ponents to construct the final search graph G, with the optimization techniques

applied. The construction process is as follows:

G = πε(min(det(H ◦ det(C ◦ det(L̃ ◦Gm))))) (1)

where L̃ is the lexicon with the auxiliary tags added, det and min denote determi-

nazation and minimization, respectively. πε replaces introduced auxiliary symbols

by the null symbol ε, and removes the transitions whose input and output labels

are both null. Note that Equation 1 ignores some details that are not the focus

of the paper but important for the HCLG construction, such as disambiguity for

homophones, auxiliary symbol augment for H and C. Readers are referred to [9]

for details. It also deserves to remind that the minimization operation implicitly

involves weight pushing in OpenFST, the tool used for HCLG construction in our

work.

3.3 HCLG embedding

The G embedding aims to decompose the LM into a static component (CNLM)

and a dynamic component (classes) so that the LM can be adapted quickly to
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a new domain without retraining the entire LM from scratch. The advantage of

this approach is that the resultant search graph is almost optimized due to the

optimization steps following the embedding. The disadvantage, obviously, is that it

does not support on-the-fly adaptation, e.g., dynamic domain switch.

An HCLG embedding approach is presented in this section, which is similar to

the dynamic embedding approaches proposed by previous researches [12, 13, 14, 15]

though several differences exist. First of all, the dynamic embedding focuses on

dynamic modification for the content of the class grammar, whereas the HCLG em-

bedding proposed here does not change the class content, instead re-load new class

implementations (in the form of HCLG FSTs). Secondly, the dynamic embedding

expands class transitions on demand, while the HCLG embedding expands class

transitions before the decoding is started. This means that the dynamic embedding

requires a dynamic decoder to support the realtime transition expansion in the de-

coding process, however the semi-dynamic embedding does not need to change the

decoder as all the embedding operations are on HCLGs and have been completed

before the decoding is started.

In practice, CNLM HCLG and the class HCLG are constructed individually, fol-

lowing the same process formulated in Equation 1. Figure 4 illustrates a CNLM

HCLG derived from a toy CNLM that involves two 3-word sentences (‘a <addr>

e’ and ‘i <addr> o’ ) where ‘<addr>’ is the class tag. For clearness, the class

transitions are drawn as green lines, and the leaving and entering states of these

transitions are drawn as blue and red circles, respectively. We note that there are

four occurrences of the class transitions in Figure 4.

Figure 5 presents the class HCLG derived from a simple grammar that involves

two simple words (‘are’ and ‘eye’). Following the same idea of context-share, the

class HCLG is embedded into the CNLM HCLG, by linking the leaving and entering

states of the CNLM HCLG to the starting and existing states of the class HCLG,

respectively. The resultant HCLG is shown in Figure 6, where the green transitions

illustrate how the two HCLGs are linked as an entire search graph.
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Figure 4 A simple CNLM HCLG FST.
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Figure 5 A simple class HCLG FST.

The HCLG embedding algorithm is similar to Algorithm 1, except that no auxil-

iary tags are needed to label the added link-in and link-out transitions: the link-in

transitions are labeled as a silence phone, and the link-out transitions copy the la-

bels from the original class transitions in the CNLM HCLG. Again, an embedding
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Figure 6 The HCLG FST that embeds the class HCLG in Figure 5 into the CNLM HCLG in
Figure 4.

weight is used to tune the probability that the search path transiting into the class

HCLG, although it is set to zero in Figure 6.

We highlight that the context-share strategy avoids the unaffordable memory and

computation cost associated with the full class transition expansion. This allows

very fast FST embedding and can be even done on-the-fly. In our experiments, em-

bedding a class HCLG in a large scale CNLM HCLG derived from a 3-gram CNLM

with 150k words requires less than one second on a computer with a dual-1.6GHz

CPU. The disadvantage, however, is that no additional optimization (particularly

weight pushing) is conducted after the embedding, possibly resulting in a subopti-

mal search graph.

We note that the HCLG embedding is still semi-dynamic since the compilation of

the class HCLG is offline. To support on-the-fly grammar adaptation, this approach

can be combined with the dynamic embedding approach that has been investigated

by some researchers, e.g., [15]. This leads to the following design principle in prac-

tice: the G semi-dynamic embedding is the least flexible but the resultant graphs

are the most compact and optimal, so it is suitable for domain-specific adaption

on the server side; the HCLG semi-dynamic embedding is more flexible than the G

embedding, but the resultant graphs are less optimal, so is suitable for user-specific

model adaptation and can be employed on either the server or the client side; the

dynamic embedding is the most flexible but does not support large-scale adapta-

tion and often requires a dynamic decoder, so it is more suitable for session-specific

adaptation, particularly on the client side.

4 Experiment
This section presents experiments to validate the semi-dynamic embedding ap-

proach. A large Chinese ASR task in the telecom domain was choosed to evaluate

the embedding approaches, and the evaluation is in terms of the word error rate

(WER) delivered by the ASR system. We first introduce the experimental config-

urations, and then compare the G embedding and HCLG embedding. The impact

of the quality of the CNLM and the complexity of the class grammar are also

investigated.

4.0.1 Database

The ASR task that we choosed aimed to transcribe conversations recorded from

online service calls. The domain was telecom service and the language was Chinese.

To train the acoustic model (AM), we manually transcribed 1400 hours of on-line

speech recordings from a large call center service provider.

To train the LM, we collected 64 Mb text data including the transcription of the

AM training speech and some logs of web-based customer service systems in the
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domain of telecom service. This amounted to 1.4 million sentences or 11.5 million

words.

We choosed a list of NEs as the class grammar. In this work, the NEs are ad-

dress names, and the selected address names are low-frequency and occur less than

10 times in the training corpus. We assume that high-frequency NEs can be well

modeled by the classical 3-gram model and do not rely on embedding.

In order to evaluate the performance of the embedding approaches, a special

test set was designed. It consists of 120 transcriptions and 240 utterances from

12 persons, where each transcription was recorded by 2 different persons (so 2

utterances). For each transcription, an address name is involved as a part of class

grammar. The test utterances are divided into 3 subset, according to the frequency

of the address name involved in the training text. The group HIGH consists of 60

utterances (30 different transcriptions) for which the address names involved are

high-frequency (>10 times in the training text) and not in the grammar; the group

LOW consists of 80 utterances (40 different transcriptions) whose address names

are rare in the training text (< 10 times) and are in the grammar; the group NONE

consists of the rest 100 utterances (50 different transcriptions) whose address names

do not appear in the training text but have been involved in the NE list. There are

totally 10 unseen address names and each occurs 5 times in the test transcriptions.

With this test set, we can compare the contribution of the embedding approaches

to NEs of different frequencies.

4.0.2 Acoustic model training

The ASR system is based on the state-of-the-art HMM-DNN acoustic modeling

approach, which represents the dynamic properties of speech signals using the hid-

den Markov model (HMM), and represents the state-dependent signal distribution

by the deep neural network (DNN) model. The feature used is the 40-dimensional

FBank power spectra. A 11-frame splice window is used to concatenate neighbouring

frames to capture the long temporal dependency of speech signals. The linear dis-

criminative analysis (LDA) is applied to reduce the dimension of the concatenated

feature to 200.

The Kaldi toolkit was used to train the HMM and DNN models. The training

process largely followed the WSJ s5 GPU recipe published with Kaldi [24]. Specifi-

cally, a pre-DNN system was first constructed based on the Gaussian mixture model

(GMM), and this system was then used to produce phone alignments for the training

data. The alignments were employed to train the DNN-based system.

The DNN model involves 4 hidden layers, each of which consists of 1200 units. The

output layer consists of 3600 units, corresponding to the shared context-dependent

phone states that inherit from the GMM-based system. The DNN training utilizes

the stochastic gradient descendent (SGD) algorithm, with the objective function set

to be the cross entropy between the frame targets and the DNN-based predictions.

The training was conducted with a Tesla K20c GPU card, and the training process

lasted roughly one week for the 1400 hours of training speech.

4.0.3 Language model training

When training the Chinese LM, the training text was first normalized, including

removing unrecognized characters, unifying different encoding schemes, normalizing
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the spelling form of numbers and letters. After the normalization, the training

data was segmented into word sequences. A word segmentation tool based on the

maximum likelihood was used in this work. We selected 150,000 words as the LM

lexicon, according to the word frequency in the segmented training text. The SRILM

toolkit was then used to train a classical 3-gram LM, which was smoothed by the

Kneser-Ney discounting.

As mentioned, the class grammar in this work was a list of NEs (address names

here). When training the CNLM, the NEs were first replaced by the class tag

<addr>, and then the CNLM was trained as a normal 3-gram LM, by treating

<addr> as a regular word. Note that we only replaced low-frequency NEs (< 10

times), as high-frequency NEs can be well modeled by 3-grams in the CNLM.

4.1 Baseline

We take the system with the classical 3-gram LM as the baseline. Table 1 report

WER of the baseline system. In order to give more insight into NE recognition, the

NE error rate (NEER) is also reported, i.e., the percentage of NEs that are failed

to be recognized, without considering other words. The NEER is reported for the

entire test set and the three subsets: ‘HIGH’ involves high-frequency NEs that not

in the class NE set; ‘LOW’ involves low-frequency NEs that are in the class NE set;

‘NONE’ involves unseen (zero-frequency) NEs that are in the class NE set.

NEER%
System WER% HIGH LOW NONE TOTAL
3-gram 20.66 21.7 42.5 58.0 43.8

Table 1 WER and NEER result of the baseline.

From Table 1, we observe that low-frequency NEs are much more difficult to

recognize than high-frequency NEs, and the unseen NEs are the most difficult to

recognize. This is expected, as less frequent NEs tend to be less represented by

the LM. Note that the unseen NEs are not totally unrecognized. For one reason,

the smoothing approach allocates some probability mass to the unseen NEs when

training the LM, and for the other reason, unseen NEs can be recognized in the

form of a word or character sequence. Nevertheless, there is a big gap between the

unseen/low-frequency NEs and the high-frequency NEs.

4.2 Graph embedding

We experimented with the semi-dynamic embedding approach. First of all, we ex-

tracted 490 low-frequency address names that occurred in the training corpus, and

used these address names to tag the training text, i.e., replaced these address names

by the class tag <addr>. There were totally 1369 sentences that were tagged. These

tagged sentences, together with the original training data, were used to train the

CNLM. Finally, we added 10 unseen address names to the original 490 addresses,

leading to an NE set involving 500 address names.

Based on the CNLM and the NE set, we experimented with the G embedding and

HCLG embedding approaches, with different settings of the embedding weight w.

The experiments were conducted following the same process as the baseline system.

Note the ‘LOW’ test NE subset is included in the 490 NE list. The results of the G

embedding and HCLG embedding are presented in Table 2 and Table 3, respectively.
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System w WER % NEER%
HIGH LOW NONE TOTAL

3-gram - 20.66 21.7 42.5 58.0 43.8
G Embedding 1 15.72 21.7 21.2 16.0 19.2

2 14.84 21.7 17.5 10.0 15.4
3 15.35 21.7 16.3 10.0 15.0
4 15.23 21.7 16.3 10.0 15.0
5 15.33 25.0 12.5 7.0 13.3
6 16.57 31.7 10.0 7.0 14.2

Table 2 WER and NEER result with G embedding. NE set size: 500, tagged sentences: 1369.

System w WER % NEER%
HIGH LOW NONE TOTAL

3-gram - 20.66 21.7 42.5 58.0 43.8
HCLG Embedding 2 17.35 23.3 33.8 33.0 30.8

3 15.94 23.3 22.5 28.0 25.0
4 15.25 25.0 20.0 20.0 21.2
5 14.86 25.0 20.0 13.0 18.4
6 16.08 26.7 15.0 14.0 17.4

Table 3 Result with HCLG embedding. NE set size: 500, tagged sentences: 1369.

From the results we can see that both the G embedding and the HCLG embedding

can considerably improve performance of the ASR system, in terms of both WER

and NEER. For both the two approaches, a large weight tends to provide better

recognition for low-frequency and unseen NEs but lead to more errors for high-

frequency words. This is expected since a large weight encourages traveling into the

class graph in decoding and thus recognize more NEs in the class grammar. Inter-

estingly, a reasonable w does not lead to performance reduction on high-frequency

NEs, which means that the embedding approaches are safe in general.

Comparing the two embedding approaches, we see slightly better performance

with the G embedding, if we compare the best performance with an optimal embed-

ding weight (14.84 with G embedding v.s. 14.86 with HCLG embedding). However

the G embedding seems more reliable, as the improvement on the low-frequency

NEs does not impact the performance on the high-frequency NEs, if the embedding

weight is moderately set. Additionally, the G embedding looks more effective than

the HCLG embedding in boosting low-frequency and unseen NEs. This advantage

with the G embedding, as we discussed, can be attributed to the re-optimization

after the embedding. Nevertheless, the HCLG embedding works fairly well, and it

possesses the advantage of more flexibility.

As a summary, the proposed semi-dynamic approach can safely improve ASR per-

formance on low-frequency and unseen NEs, and does not impact the performance

on other words if a moderate embedding weight is set. This lends itself to quick

domain-specific adaptation where the domain-specific words and phrases that need

to recognize are often of low-frequency or unseen in the original model.

4.3 Impact of CNLM quality

The quality of the embedded graph is impacted by the quality of the CNLM and

the complexity of the NE set. This section studies the impact of the CNLM quality.

We used the G embedding to conduct the study, and the experimental settings were

the same as in the previous section, except that the number of tagged sentences was

reduced. To achieve that, we choosed 100 low-frequency address names to tag the

training corpus, instead of 490 address names in the previous experiment. There
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were 165 sentences that were tagged, compared to the 1369 sentences in the previous

experiment. The less tagged sentences led to a weaker CNLM for the class tags. The

results are shown in Table 4.

System w WER % NEER%
HIGH LOW NONE TOTAL

3-gram - 20.66 21.7 42.5 58.0 43.8
G embedding 2 16.25 23.3 27.5 23 24.6

3 15.45 23.3 22.5 20 21.7
4 15.59 23.3 21.2 15 19.2
5 15.62 21.7 20.0 13 17.5
6 15.50 21.7 17.5 12 16.3
7 15.59 23.3 21.2 15 19.2
8 15.62 28.3 20.0 13 19.2

Table 4 Result with G embedding. NE set size: 500, tagged sentences: 165

It can be seen that the lower quality of the CNLM does impact the performance,

but the impact seems marginal (WER increases from 14.84% to 15.50%). This

suggests that a moderate number of tagged sentences are likely sufficient to train

a reasonable CNLM. Another observation is that the optimal embedding weight

increases from 2.0 to 6.0. This is not surprising as less tagged sentences leads to a

lower probability for transiting into the class graphs, and therefore requires a larger

embedding weight to compensate for the lost probability.

4.4 Impact of NE set

The final experiment investigated the impact of complexity of the NE set on the

quality of the embedded graph. Recall that the NE set involved 500 address names

in the previous experiments. In this experiment, the NE set was augmented with

another 780 unseen addresses, leading to an NE set involving 1280 address names.

Due to the large number of members, the complexity of the class was significantly

increased. The same 490 NEs were used to tag the training text, so the number of

tagged sentences remained 1369. Again, we focused on the G embedding. Table 4

shows the results.

System w WER % NEER%
HIGH LOW NONE TOTAL

3-gram - 20.66 21.7 42.5 58.0 43.8
G embedding 0 15.96 23.3 23.7 19 21.7

1 15.40 21.7 21.2 16 19.2
2 15.08 20.0 17.5 10 15.0
3 15.33 20.0 16.3 10 14.6
4 15.20 25.0 16.3 10 15.8
5 15.47 25.0 12.5 7 13.3
6 16.76 31.7 10.0 7 14.2

Table 5 Result with G embedding. NE set size: 1280, tagged sentences: 1369

We see that the WER with the more complex NE set increases from 14.84%

to 15.08%. This is expected and reasonable, considering that much more unseen

address names are added into the NE set. Fortunately, the performance degradation

seems not that much; particularly, including more unseen NEs does not impact

the performance on frequent NEs. This is a desirable property and it suggests

that involving a relatively large set of unseen NEs is possible with the embedding

approach. Another finding is that the optimal embedding weight remains the same

with the large NE set. This suggests that the embedding weight is largely determined
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by the amount of tagged sentences in CNLM training and has not to be re-tuned if

the NE set is changed. This is also a good property in practical usage.

5 Conclusions
In this paper, we propose two semi-dynamic embedding approaches that combine

a large-scale CNLM that is domain-independent and trained with a large amount

of data and some class grammars that are domain-dependent and can be quickly

adapted. The decoding graph with the G embedding is more compact and optimal

while the HCLG embedding possesses the advantage of more flexible adaptation.

The experiments demonstrated that the proposed two embedding approaches can

significantly improve the performance of speech recognition on low-frequency and

unseen NEs, especially with the G embedding. This lends the semi-dynamic ap-

proach to quick domain-specific adaptation for which many words and phrases are

low-frequency or unseen in the original model. In addition, we found that the im-

pact of the CNLM quality and the complexity of the class grammars is moderate,

and the embedding weight is rather robust against the change of grammars.
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