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Speaker diarization is the task of determining 
“who spoke when?” 
 
 Involve determining the number of speakers 
and identifying the speech segments 
corresponding to each speaker. 
 
A prepocessing for other downstream application. 
Such as speech retrieval, speech to text 
transcription and speaker recognition. 



General architecture of Speaker Diarization 
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Figure 1 An overview of a typical diarization system  

演示者
演示文稿备注
Noise reduction: such as Wiener filteringBeamforming: for multichannel. App have different mic. 1\ perform each channel and merge outputs. 2\ combine channels with weighted sum use signal to noise ratio. 3\ toolkits, BeamformIt. Delay and sum algorithmSpeech activity detection: speech or non-speech detection. Energy based; Model based; Hybrid.Feature extraction: mfcc, plp etc..



Main approaches for speaker diarization 
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Figure 2 Alternative clustering schemas  

Bottom-up approach: 
Training a number of 
clustering, merging and 
reducing the number of clusters  
until get the optimum number of 
clusters. 

Top-down approach: 
Start with a single speaker 
model trained on all speech 
segment. Then add new 
speaker until the stop 
criterion. 



Brief Introduction of Algorithm 
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Initialize clusters with the speech segments. 
Merge/split closet clusters. 
Update distances of remaining cluster to new cluster. 
Iterate until stopping criterion is met.  
Re-segmentation  with GMM viterbi decoding. 



Comparison and Combination 
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Bottom-up approach Top-down 
approach 

Combination 

Agglomerative 
hierarchical clustering.  

Divisive hierarchical 
clustering.  

Treat top-down 
output as a base 
segmentation 
and apply 
bottom-up 
output to purify 
it. 

Use segment to train 
model is likely to capture 
more purer models.  
Bur it may corresponding 
to a single speaker or a 
phone class(short-term 
feature) 

Use larger data to 
train small number of 
models  
Normalize both 
phone class and 
speaker. 
Can be purified. 



Traditional Distance Metrics 
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0 The null hypothesis is that there is no speaker change at time t.  
 
1 A speaker change point is hypothesized at time t 

LLR criterion: 

BIC criterion: 



Evaluation approach  
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Stability SAD  

DER=Speaker Error+False  Alarm/Missed  speech error+overlapped error 

Dataset: NIST has organized a series of benchmark evaluations. 
Ground truth: manual labeling of acoustic data. 
DER is used as a results. It is composed as following figure. 

Unsolved problem Large variations 
Not robust 
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 From features 

 time-delay features. Combine acoustic features and inter-

channel delay feature. 

 Prosodic features in diarization. 

 Fusing short term and long term. 

 From models 

 Use eigenvoice model to represent speaker. 

 From metrics 

 Such Reference Speaker Model proposed by Wang Gang. 
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 New approaches 
 non parametric 

 the agglomerative information bottleneck (aIB)  
 the sequential information bottleneck 

    To finding the most compact representation C of data X that 
minimizes the mutual information I(X,C) and preserves as much 
information as possible about Y (maximizing I(C, Y )). It can 
significant saving in computation. 

 
 Monte Carlo Markov Chains (MCMC)   sampling 
method 
 speaker binary keys 
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 New approaches 
 Bayesian machine learning 

not aim at estimating the parameters of a system  (i.e. to 
perform point estimates), but rather the parameters  of their 
related distribution (hyperparameters). 

Bset model 

Marginal likehood 

MAP to estimate 

BIC 
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 New approaches 
 Variational Bayes 

 

Introduce a variational distribution and apply Jensen inequality 

to define the upper bound on the marginal log likehood. 

 



outlook 
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 Overlapped speech. 

 Robust to unseen variations. 

 More efficient in order to process increasing dataset sizes. 
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