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Abstract

Recurrent neural networks (RNNs) have shown clear superiority in sequence
modeling, particularly the ones with gated units, such as long short-term memory
(LSTM) and gated recurrent unit (GRU). However, the dynamic properties
behind the remarkable performance remain unclear in many applications, e.g.,
automatic speech recognition (ASR). This paper employs visualization techniques
to study the behavior of LSTM and GRU when performing speech recognition
tasks. Our experiments show some interesting patterns in the gated memory, and
some of them have inspired simple yet effective modifications on the network
structure. We report two of such modifications: (1) lazy cell update in LSTM,
and (2) shortcut connections for residual learning. Both modifications lead to
more comprehensible and powerful networks.
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1 Introduction
Deep learning has gained brilliant success in a wide spectrum of research areas

including automatic speech recognition (ASR) [1]. Among various deep models, re-

current neural network (RNN) is in particular interesting for ASR, partly due to

its capability of modeling the complex temporal dynamics in speech signals as a

continuous state trajectory, which essentially overturns the long-standing hidden

Markove model (HMM) that describes the dynamic properties of speech signals as

discrete state transition. Promising results have been reported for the RNN-based

ASR [2, 3, 4]. A known issue of the vanilla RNN model is that training the network is

generally difficult, largely attributed to the gradient vanishing and explosion prob-

lem. Additionally, the vanilla RNN model tends to forget things quickly. To solve

these problems, a gated memory mechanism was proposed by researchers, leading

to gated RNNs that rely on a few trainable gates to select the most importan-

t information to receive, memorize and propagate. Two widely used gated RNN

structures are the long short-term memory (LSTM), proposed by Hochreiter [5],

and the gated recurrent unit (GRU), proposed recently by Cho et al. [6]. Both of

the two structures have delivered promising performance in ASR [4, 7].

Despite the success of gated RNNs, what has happened in the gated memory at

run-time remains unclear in speech recognition. This prevents us from a deep under-

standing of the gating mechanism, and the relative advantage of different gated units

can be understood neither intuitively nor systematically. In this paper, we utilize

the visualization technique to study the behavior of gated RNNs when performing

ASR. The focus is on the evolution of the gated memory. We are more interested

in the difference of the two popular gated RNN units, LSTM and GRU, in terms
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of duration of memorization and quality of activation patterns. With visualization,

the behavior of a gated RNN can be better understood, which in return may inspire

ideas for more effective structures. This paper reports two simple modifications in-

spired by the visualization results, and the experiments demonstrate that they do

result in models that are not only more powerful but also more comprehensible.

The rest of the paper is organized as follows: Section 2 describes some related

work, and Section 3 presents the experimental settings. The visualization results

are shown in Section 4, and two modifications inspired by the visualization results

are presented in Section 5. The entire paper is concluded by Section 6.

2 Related work

Visualization has been used in several research areas to study the behavior of neu-

ral models. For instance, in computer vision (CV), visualization is often used to

demonstrate the hierarchical feature learning process with deep conventional neu-

ral networks (CNN), such as the activation maximization and composition analy-

sis [8, 9, 10]. Natural language processing (NLP) is another area where visualiza-

tion has been widely utilized. Since word/tag sequences are often modeled by an

RNN, visualization in NLP focuses on analysis of temporal dynamics of units in

RNNs [11, 12, 13, 14].

In speech recognition (and other speech processing tasks), visualization has not

been employed as much as in CV and NLP, partly because displaying speech signals

as visual patterns is not as straightforward as for images and text. The only work

we know for RNN visualization in ASR was conducted by Miao et al. [15], which

studied the input and forget gates of an LSTM, and found they are correlated.

The visualization analysis presented in this paper differs from Miao’s work in that

our analysis is based on comparative study, which identifies the most important

mechanism for good ASR performance by comparing the behavior of different gated

RNN structures (LSTM and GRU), in terms of activation patterns and temporal

memory traces.

Comparative analysis for LSTM and GRU has been conducted by Chung et

al. [16]. This paper is different from Chung’s work in that we compare the two

structures by visualization rather than by reasoning. Moreover, our analysis focuses

on group behavior of individual units (activation pattern), rather than an all-in-one

performance.

3 Experimental setup

We first describe the LSTM and GRU structures whose behaviors will be visualized

in the following sections, and then describe the settings of the ASR system that the

visualization is based on.

3.1 LSTM and GRU

We choose the LSTM structure described by Chung in [16], as it has shown good

performance for ASR. The computation is as follows:
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it = σ(Wixxt +Wimmt−1 + Vicct−1)

ft = σ(Wfxxt +Wfmmt−1 + Vfcct−1)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1)

ot = σ(Woxxt +Wommt−1 + Vocct)

mt = ot � h(ct).

In the above equations, the W and V terms denote weight matrices, where V ’s are

diagonal. xt is the input symbol; it, ft, ot represent respectively the input, forget

and output gates; ct is the cell and mt is the unit output. σ(·) is the logistic sigmoid

function, and g(·) and h(·) are hyperbolic activation functions. � denotes element-

wise multiplication. We ignore bias vectors in the formula for simplification.

GRU was introduced by Cho in [6]. It follows the same idea of information gating

as LSTM, but uses a simpler structure. The computation is as follows:

it = σ(Wixxt +Wicct−1)

ft = 1 − it

ot = σ(Woxxt +Wocct−1)

mt = ot � ct−1

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt). (1)

3.2 Speech recognition task

System Recurrent Layers WER%

LSTM

1 10.96
2 9.97
4 9.67
6 9.47

GRU

1 10.76
2 9.47
4 9.32
6 9.32

Table 1: Performance of LSTM and GRU systems.

Our experiments are conducted on the WSJ database whose profile is largely

standard: 37, 318 utterances for model training and 1, 049 utterances (involving

dev93, eval92 and eval93) for testing. The input feature is 40-dimensional Fbanks,

with a symmetric 2-frame window to splice neighboring frames. The number of

recurrent layers varies from 1 to 6, and the number of units in each hidden layer is

set to 512. The units may be LSTM or GRU. The output layer consists of 3, 377

units, equal to the total number of Gaussian components in the conventional GMM

system used to bootstrap the RNN model.

The Kaldi toolkit [17] is used to conduct the model training and performance

evaluation, and the training process largely follows the WSJ s5 nnet3 recipe. The

natural stochastic gradient descent (NSGD) algorithm [18] is used to train the
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model. The results in terms of word error rate (WER) are reported in Table 1,

where ‘LSTM’ denotes the system with LSTMs as the recurrent units, and ‘GRU’

denotes the system with GRUs as the recurrent units. We can observe that the

RNNs based on GRU units perform slightly better than the one based on LSTM

units.

4 Visualization
This section presents some visualization results, revealing the similarity and d-

ifference of memory patterns between LSTM and GRU, especially on the cells’

activations, responsibilities and temporal properties.

4.1 Activation patterns

Figure 1: The distribution of cell activations of LSTM RNN.

The first experiment investigates how different gated RNNs encode information

in different ways. For both LSTM and GRU RNNs, 50 units are randomly selected

from each hidden layer, and for each unit, the distribution of the cell values ct on

500 utterances is computed. The results are shown in Fig. 1 and Fig. 2 for the LSTM

and GRU RNNs respectively. For LSTM, we reset irregular values (smaller than −10

or bigger than 10) to −10 or 10, for better visualization. It can be observed that

most of the cell values in LSTM concentrate on zero values, and the concentration

decreases in higher-level layers. This pattern suggests that LSTM relies on great

positive or negative cell values of some units to represent information. In contrast,

most of the cells in GRU concentrate on −1 or +1, and this pattern is more clear

for the higher-level layers. This suggests that GRU relies on the contrast among

cell values of different units to encode information. This difference in activation

patterns suggests that information in GRU is more distributed than in LSTM. We
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Figure 2: The distribution of cell activations of GRU RNN.

conjecture that this may lead to a more compact model with a better parameter

sharing.

We also confirm this difference by computing the overall percentages of cell acti-

vations in (−2,+2) for LSTM, and the overall percentages of cell activations outside

of (−0.7,+0.7) for GRU. The visualization is shown in Fig. 3.
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Figure 3: Overall percentages of activations in (−2,+2) for LSTM (left), and

overall percentages of activations outside of (−0.7,+0.7) for GRU (right).

A related observation is that the activations of LSTM cells are unlimited, and the

absolute values of some cells are rather large. For GRU, the cell values are strictly

constrained with in (−1,+1). This can be also derived from Eq. (1): since ft and

it are both positive and less than 1, g(·) is between (−1,+1), if a cell is initialized

by a value between (−1,+1), the cell will remain in this range. The constrained

range of values is an advantage for model training, as it may partly avoid abnormal

gradients that often hinder RNN training.
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4.2 Neuronal responsibility

The previous section shows that some units in LSTM activate great positive or

negative values to represent information. We regard these activations as irregular

ones (set to be beyond (-10,+10)). For GRU, the irregular activations should reveal

the contrast among cell values of different units. The activation values in (−0.5, 0.5)

in GRU are much more scarcer and can be treated as irregular ones. We study all

the units’ responsibility to recognize phones. The responsibility is defined as the

possibility with which a unit activates irregularly to a special phone. Fig. 4 shows

the number of units of different layers in LSTM with responsibility of more than

80% to all phones, and Fig. 5 shows the number of units of different layers in

GRU with responsibility of more than 50% to all phones. It can be seen that, the

numbers of units for recognizing different phones in the same layer are much closer

than between different layers, for both LSTM and GRU. The difference exists that,

for LSTM, the units of higher-level layers tend to response to special phones much

more, while for GRU, the higher-level layers are more stable and distributed.
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Figure 4: Total numbers of units with responsibility of more than 80% to all

phones in 4-layer LSTM RNN.
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Figure 5: Total numbers of units with responsibility of more than 50% to all

phones in 4-layer GRU RNN.
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If a neuron shows much higher/lower responsibility to one phone than any other

phones, this neuron is much more possible to recognize this phone. Following this

rule, we study a single LSTM, and find that several units can recognize special

phones on their own, as shown in Fig. 6.
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Figure 6: Single units in a 1-layer LSTM RNN recognize the phone ’SIL’.

4.3 Temporal trace
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Figure 7: The temporal trace of LSTM and GRU.

We then investigate the evolution of the cell activations when performing recogni-

tion. This is achieved by drawing the cell vectors of all the frames using the t-SNE
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tool [19] when decoding an utterance. The results are shown in Fig. 7, where the

temporal traces for the four layers are drawn in the plots from top to bottom. An

interesting observation is that the traces are much more smooth with LSTM than

with GRU. This indicates that LSTM tends to remember more than GRU: with

a long-term memory, the novelty of the current time is largely averaged out by

the past memory, leading to a smooth temporal trace. For GRU, new experience is

quickly adopted and so the memory tends to change drastically. When comparing

the memory traces at different layers, it can be seen that for GRU, the traces become

more smooth at higher-level layers, whereas this trend is not clear for LSTM. This

suggests that GRU can trade off innovation and memorization at different layers:

at low-level layers, it concentrates on innovation, while at high-level layers, mem-

orization becomes more important. This is perhaps an advantage and is analog to

our human brain where the low-level features change abruptly while the high-level

information keeps evolving gradually.

4.4 Memory robustness

The robustness of LSTM and GRU with noise interruptions are also tested. Spe-

cially, during the recognition, a noise segment is inserted into the speech stream,

and we observe the influence of this noise segment by visualizing the difference in

cell values caused by the noise insertion. The results are shown in Fig. 8.

Figure 8: The memory change with noise segment insertion.

It can be seen that both units accumulate longer memory at higher-level layers,

and GRU is more robust than LSTM in noisy conditions. With LSTM, the impact

of the noise lasts almost till the end on some cells, even at the final layer for which

the units are supposed to be noise robust. With GRU, the impact lasts just a

few frames. This demonstrates a big advantage of GRU, and double confirms the

observation in the second experiment that GRU remembers less than LSTM.
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5 Application to structure design
The visualization results shown in the previous section demonstrate that LSTM

and GRU possess different properties in both information encoding and temporal

evolution. By these differences, it is not easy to tell which model is better in a

particular task. In speech recognition, the experimental results in Section 3.2 seem-

ingly demonstrate that GRU is more suitable. This can be explained by the fact

that speech signals are pseudo-stationary and typical durations of phones are not

longer than 50 frames. This means that shorter memory is likely an advantage, par-

ticularly when the noise robustness is considered. Inspired by these observations, we

introduce some modifications to LSTM and/or GRU, both resulting in performance

gains.
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Figure 9: Two modifications for gated RNNs. (a) Lazy cell update; (b) Shortcut

connection for residual learning.

5.1 Lazy cell update

A difference between LSTM and GRU, as shown in Section 3.1, is that GRU updates

cells as the final step, while LSTM updates cells before computing output gates.

To study the impact of the lazy update with GRU, we reorder the computation in

LSTM as shown in Fig. 9 (a). The recognition results are presented in Table 2, and

the temporal trace with lazy update is shown in Fig. 10 (a). Note that only the

final LSTM layer has been modified.

From the results, it can be seen that the lazy update does improve performance

of LSTM. From the temporal trace, it seems that the modified LSTM behaves more

like a GRU: the trace is less smooth, allowing quicker adoption of new input. This

demonstrates the short-memory behavior of GRU is possibly an important factor

for the good performance, and this behavior is closely related to the lazy cell update.
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WER%

Recurrent Layers Baseline Lazy Update

1 10.96 10.18

2 9.97 9.48

4 9.67 9.10

Table 2: Performance of LSTM without/with lazy cell update.
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Figure 10: Memory trace of (a) LSTM with lazy update (left); (b) LSTM with

shortcut connections (center); (c) GRU with shortcut connections (right).

5.2 Shortcut connections for residual learning

Another modification is inspired by the visualization result that the gates at high-

level layers show a similar pattern [12]. This implies that the cells in high-level layers

are mostly learned by residual. This is also confirmed by recent research on residual

net [20]. We borrow this idea and add explicit shortcut connections alongside the

gated units, so that the main path is enforced to learn residual. This is shown in

Fig. 9 (b).

WER%

System Recurrent Layers Baseline Residual Learning

LSTM
4 9.67 9.53
6 9.47 9.33

GRU
4 9.32 9.23
6 9.32 9.10

Table 3: Performance of LSTM/GRU with memory residual connections.

The results with the residual learning are shown in Table 3, and the temporal

traces are shown in Fig 10 (b)(c). These results show that adding shortcut connec-

tions indeed introduces consistent performance gains with both LSTM and GRU.

The temporal traces at different layers seem more consistent (note that for t-SNE,

only the topological relations are important). This is particularly evident for GRU,

where the third layer now can remember some short-time events as well. This is ex-

pected, as the information flow is quicker and easier with the shortcut connections.



Tang et al. Page 11 of 12

6 Conclusion
This paper presented some visualization results for gated RNNs, and in particular

focused on comparison between LSTM and GRU. The results show that the two

gated RNNs use different ways to encode information and the information in GRU

is more distributed. Moreover, LSTM possesses a long-term memory but it is also

noise sensitive. Inspired by these observations, we introduced two modifications to

enhance gated RNNs: lazy cell update and short connections for residual learning,

and both provide interesting performance improvement. Future work will compare

neural models in different categories, e.g., TDNN and RNN.



Tang et al. Page 12 of 12

Author details
1Center for Speech and Language Technologies, Research Institute of Information Technology, Tsinghua University,

Room 1-303, Building FIT, 100084 Beijing, China. 2Center for Speech and Language Technologies, Division of

Technical Innovation and Development, Tsinghua National Laboratory for Information Science and Technology,

Room 1-303, Building FIT, 100084 Beijing, China. 3Chengdu Institute of Computer Applications, Chinese Academy

of Sciences, 610041 Chengdu, China.

References
1. Li Deng and Dong Yu, “Deep learning: Methods and applications,” Foundations and Trends in Signal

Processing, vol. 7, no. 3-4, pp. 197–387, 2013.

2. Alex Graves, A-R Mohamed, and Geoffrey Hinton, “Speech recognition with deep recurrent neural networks,”

in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2013, pp. 6645–6649.

3. Alex Graves and Navdeep Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,” in

Proceedings of the 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.

4. Hasim Sak, Andrew Senior, and Françoise Beaufays, “Long short-term memory recurrent neural network

architectures for large scale acoustic modeling,” in Proceedings of the Annual Conference of International

Speech Communication Association (INTERSPEECH), 2014.

5. Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.
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