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ABSTRACT

Recurrent neural networks (RNNs) have shown clear superi-
ority in sequence modeling, particularly the ones with gated
units, such as long short-term memory (LSTM) and gated re-
current unit (GRU). However, the dynamic properties behind
the remarkable performance remain unclear in many appli-
cations, e.g., automatic speech recognition (ASR). This pa-
per employs visualization techniques to study the behavior of
LSTM and GRU when performing speech recognition tasks.
Our experiments show some interesting patterns in the gated
memory, and some of them have inspired simple yet effec-
tive modifications on the network structure. We report two of
such modifications: (1) a shortcut path from cells to outputs
in LSTM, and (2) a residual learning mechanism for high-
level cells. Both the two modifications, without any addi-
tional parameters, lead to more comprehensible and powerful
networks.

Index Terms— long short-term memory, gated recurrent
unit, visualization, residual learning, speech recognition

1. INTRODUCTION

Deep learning has gained brilliant success in a wide spec-
trum of research areas including automatic speech recognition
(ASR) [1]. Among various deep models, recurrent neural net-
work (RNN) is in particular interesting for ASR, partly due
to its capability of modeling the complex temporal dynamics
in speech signals as a continuous state trajectory, which es-
sentially overturns the long-standing hidden Markove model
(HMM) that describes the dynamic properties of speech sig-
nals as discrete state transition. Promising results have been
reported for the RNN-based ASR [2–4]. A known issue of the
vanilla RNN model is that training the network is generally
difficult, largely attributed to the gradient vanishing and ex-
plosion problem. Additionally, the vanilla RNN model tends
to forget things quickly. To solve these problems, a gated
memory mechanism was proposed by researchers, leading
to gated RNNs that rely a few trainable gates to select the
most important information to receive, memorize, and prop-
agate. Two widely used gated RNN structures are the long

short-term memory (LSTM), proposed by Hochreiter [5], and
the gated recurrent unit (GRU), proposed recently by Cho et
al. [6]. Both the two structures have delivered promising per-
formance in ASR [?].

Despite the success of gated RNNs, what has happened
in the gated memory at run-time remains unclear in speech
recognition. This prevents us from a deep understanding of
the gating mechanism, and the relative advantage of different
gated units can be understood neither intuitively nor system-
aticaly In this paper, we utilize the visualization technique
to study the behavior of gated RNNs when performing ASR.
The focus is on the evolution of the gated memory and the
activity pattern of the gates. We are more interested in the
difference of the two popular gated RNN units, LSTM and
GRU, in terms of duration of memorization and quality of ac-
tivity patterns. By visualization, the behavior of a gated RNN
can be better understood, which in turn may inspire ideas for
more effective structures. This paper reports two simple mod-
ifications inspired by the visualization results, and the exper-
iments demonstrated that they do result in model that are not
only more powerful but also more comprehensible.

The rest of the paper is organized as follows: Section 2
describes some related work, and Section 3 presents the ex-
perimental settings. The visualization results are presented
in Section 4, and two modifications inspired by visualization
are presented in Section 5. The entire paper is concluded in
Section 6, with some future work discussed.

2. RELATED WORK

Visualization has been used in several research areas to study
the behavior of neural models. For instance, in computer vi-
sion (CV), visualization is often used to demonstrate the hier-
archical feature learning process with deep conventional neu-
ral networks (CNN). For example the activation maximization
and composition analysis [7–9]. Natural language processing
(NLP) is another area where visualization has been widely
utilized. Since word/tag sequences are often modeled by an
RNN, visualization in NLP focuses on analysis of temporal
dynamics of units in RNNs [10–13].



In speech recognition (and other speech processing tasks),
visualization has not been employed as much as in CV and
NLP, partly because displaying speech signals as visual pat-
terns is not as straightforward as for images and text. The
only work we know for RNN visualization in ASR is con-
ducted by Miao et al. [14], which studies the the input and
forget gates of an LSTM, and found they are correlated. The
visualization analysis presented in this paper differs from
Miao’s work in that our analysis is based on comparative
studies, which identifying the most important mechanism for
good ASR performance by comparing the behavior of dif-
ferent gated RNN structures (LSTM and GRU), in terms of
memory values, memory residual and the gating effect.

Comparative analysis for LSTM and GRU was conducted
by Chung et al. [15]. This paper is different from Chung’s
work in that we compare the two structures by visualization
rather than by reasoning. Moreover, our analysis focus on
group behavior of individual units (activity pattern), rather
than an all-in-one performance.

3. EXPERIMENTAL SETUP

We first describe the LSTM and GRU structures whose behav-
ior will visualized in following sections, and then describe the
settings of the ASR system that the visualization is based on.

3.1. LSTM and GRU

We choose the LSTM structure described by Chung in [15],
as it has shown good performance for ASR. The computation
is as follows:

it = σ(Wixxt +Wimmt−1 + Vicct−1) (1)
ft = σ(Wfxxt +Wfmmt−1 + Vfcct−1) (2)
ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1) (3)
ot = σ(Woxxt +Wommt−1 + Vocct) (4)
mt = ot � h(ct). (5)

In the above equations, the W and V terms denote weight
matrices, where V ’s are diagonal. xt is the input symbol; it,
ft, ot represent respectively the input, forget and output gates;
ct is the cell and mt is the unit output. σ(·) is the logistic
sigmoid function, and g(·) and h(·) are hyperbolic activation
functions. � denotes element-wise multiplication. We ignore
bias vectors in the formula for simplification.

GRU was introduced by Cho in [6]. It follows the same
idea of information gating as LSTM, but uses a simpler struc-
ture. The computation is as follows:

i′t = σ(W ′ixxt +W ′icc
′
t−1) (6)

f ′t = 1− i′t (7)
o′t = σ(W ′oxxt +W ′occ

′
t−1) (8)

m′t = o′t � c′t−1 (9)
c′t = f ′t � c′t−1 + i′t � g(W ′cxxt +W ′cmm

′
t). (10)

3.2. Speech recognition task

System # of Recurrent Layers WER%

LSTM

1 10.96
2 9.97
4 9.67
6 9.47

GRU

1 10.76
2 9.47
4 9.32
6 9.32

Table 1: Performance of LSTM and GRU systems

Our experiments are conducted on the WSJ database
whose profile is largely standard: 37, 318 utterances for
model training, 1049 utterances (involving dev93, eval92
and eval93) for testing. The input feature is 40-dimensional
Fbanks, with a symmetric 2-frame window to splice neigh-
boring frames. The number of recurrent layers varies from
1 to 6, and the number of units in each hidden layer is set
to 512. The units may be LSTM or GRU. The output layer
consists of 3, 377 units, equal to the total number of Gaus-
sian components in the conventional GMM system used to
bootstrap the RNN model.

The Kaldi toolkit [16] is used to conduct the model train-
ing and performance evaluation, and the training process
largely follows the WSJ s5 nnet3 recipe. The natural stochas-
tic gradient descent (NSGD) algorithm [17] is use to train the
model. The results in terms of word error rate (WER) are
reported in Table 1, where ‘LSTM’ denotes the system with
LSTMs as the recurrent units, and ‘GRU’ denotes the system
with GRUs as the recurrent units. We can observe that the
RNN based on GRU units perform slightly better than the one
based on LSTM units.

4. VISUALIZATION

We present the visualization results of the two kinds of gated
units, focusing on the properties of memory neurons and gat-
ing values.



4.1. Neuronal differentiation

The memory neurons of LSTM and GRU show obvious dif-
ferentiation, and the differentiation between different layers
varies. Fig. 1 shows the activation density of the first and fi-
nal layers of LSTM RNN. Activations in one layer of LSTM
shows severe differentiation and the activations of higher lay-
ers become much more distributed and stable. According to
values in fig. 1, we classify the memory cells of LSTM to dif-
ferent categories: silent neurons, whose values are among −1
and 1 with a possibility of 90%; and except the silent ones,
positive neurons, whose values are positive with a possibility
of 90%; negative neurons, whose values are negative with a
possibility of 90%; regular neurons, whose values are among
−5 and 5 with a possibility of 90%; excited neurons, more
than half of whose activations are out of regular range; and
others, which can not be grouped to any previous category.
Fig. 2 shows the evolving of neuronal differentiation of each
layer in a 4-layer LSTM RNN. From that figure, we find that
the silent cells become more frequently activated in higher
layers.

Fig. 1: The activation density of neurons in different layers of
a 4-layer LSTM RNN, taking the first and the final layers as
examples.

The activations of GRU neurons are much more stable and
are always among −1 and 1, as shown in fig. 3. The neurons
in the memory units of GRU show clear polarity: unipolar
neurons, including positive and negative ones as in LSTM;
and bipolar neurons, who activate both positively and nega-
tively with a possibility of at least 40%. Fig. 4 shows that the
bipolar memory units show a clear trend of growth.

4.2. Neuronal responsibility

A neuron can easily recognize a special phone by many
patterns, such as, by simply activating unusual values. For
LSTM, excited neurons are unusual, while silent neurons are
much scarer for GRU. We can get a glimpse of the mecha-
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Fig. 2: The evolution of neurons in different layers of a 4-
layer GRU RNN.

Fig. 3: The activation density of neurons in different layers
of a 4-layer GRU RNN, taking the first and the final layers as
examples.

nism inside by studying these units’ responsibility to recog-
nize phones. We define the responsibility of a neuron to a
special phone as the possibility with which this neuron acti-
vates unusually when meeting that phone. Fig. 5 shows the
number of unusual units of different layers in LSTM respon-
sible to all phones with possibility of more than 80%, and
fig. 6 shows the same thing for GRU RNN, except that, we
set the considerable responsibility to be more than 50% for
GRU’s stability. In both two figures, we find that, neurons of
lowest layer trend to activate slightly and the presentation of
labels are quiet distributed. The difference exits that the first
layer of LSTM RNN is less distributed, while the first layer
of GRU show more responsibilities.

If a neuron shows much higher/lower responsibility to one
phone than any other phones, this neuron is much more pos-
sible to recognize this phone. Following this rule, we study a
single LSTM, and find that several units can recognize special
phones on their own, as shown in fig. 7.
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Fig. 4: The evolution of neurons in different layers of a 4-
layer LSTM RNN.
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Fig. 5: Total numbers of unusual units with responsibility of
more than 80% to all phones in 4-layer LSTM RNN.

4.3. Gating saturation

We use the metric of saturation mentioned in [11]. The vi-
sualization of the number of gates prone to close or open is
shown in fig. 8.

4.4. Temporal hierarchy

We study the time scale of LSTM and GRU RNN. The results
of t-SNE on one long sentence, as presented in fig. 9, show
that LSTM tends to keep a longer memory than that of GRU.
Comparing the time scale of different layers of two kinds of
RNNs, we find that the memory length of LSTM always keeps
long, while for GRU, the memory length of last layer is longer
that of previous layers.

This can also be confirmed by inserting noise into the con-
text of speech frames and detecting the end of the influence
of the noise, as shown in fig. 10.

4.5. Temporal residual

Recurrent neural networks are actually kind of residual learn-
ing along time. Fig. 11 shows the original activations of all
memory cells of one LSTM on the same sentence used in
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Fig. 6: Total numbers of units with responsibility of more
than 50% to all phones in 4-layer GRU RNN.
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Fig. 7: Single units in a 1-layer LSTM RNN recognize the
phone ’SIL’.

fig 7, and the residual activations on the same condition. We
find that almost all the residuals are among −1 and 1, similar
to that original activations of GRU. And the pattern of resid-
ual activations is much plainer and the front-end phone ‘SIL’
is recognized with ease.

5. APPLICATION TO NEURAL STRUCTURE

By reordering the computation of LSTM, LSTM fits a shorter
memory term as GRU. Inspired by the memory pattern, we
introduce residual learning into the memory. Both of the two
modifications improve the system for ASR.

5.1. Memory exposure

Comparing the computations of LSTM and GRU in sec 3.1,
the most distinct difference between LSTM and GRU is that
GRU exposes its memory content directly to the classifier,
that may influence the memory scale, as shown in fig. 9.

We introduce this property into LSTM by reordering its
computation of the final layer of LSTM. The modification is
shown in (a) of fig. 12, and the results are shown in table 2.
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Fig. 8: The number of gates prone to close or open in different
layers of 4-layer LSTM and 4-layer GRU RNN.
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Fig. 9: The evolution of neurons in different layers of a 4-
layer LSTM RNN.

# of Layers WER%
1 10.18
2 9.48
4 9.10

Table 2: Performance of reordered LSTM

5.2. Memory residual

From the visualization of gates, we find that the higher layers’
gates show a similar pattern. This implies that the memory
in the higher layers are mostly learned by residual. Resid-
ual learning along time is presented in fig. 11. We intro-
duce residual learning into the memory cells to make memory
residual learning more explicit.

We also apply t-SEN to the memory activations of the two
modifications as shown in 13.

6. CONCLUSION

Fig. 10: The evolution of neurons in different layers of a 4-
layer LSTM RNN.

Recurrent Type # of Layers WER%

LSTM 4 9.53
6 9.33

GRU 4 9.23
6 9.10

Table 3: Performance of two units with memory residual

Fig. 11: Single units in a 1-layer LSTM RNN recognize the
phone ’SIL’.
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