Experiments on Emotional Speaker Recognition

Bie Fanhu CSLT, RIIT, THU 2012-11-05

Outline

- 1. Introduction
- 2. Speaker Database Design
- 3. E-Norm Algorithm
- 4. Pitch Based Clustering Algorithm

Introduction

 When the emotion states mismatch between the training and testing speech, the capability of speaker recognition(SR) will be significantly decreased

 The emotional speaker recognition is the task to improve the robustness of SR on the emotions

Influence Factors

Due to the speaker affected by the content of the sentence

• Due to the content of the sentence affected by the emotion of the speaker

Database Design

• Emotion Type

-Neutral, Happiness, Sadness, Anxiety, Anger

• Syllables Coverage

- -21 initials and 38 finals
- —About 500 kinds of syllables

Content Scripts

- —Emotional scripts
- -Neutral scripts

E-Norm

 Norm algorithms are to decrease the mismatches between the models and the testing features

Assumption: The scores from one speaker follow a Gaussian distribution

E-Norm

- Training Data Set
 - Train the parameters for the normalization
- Testing Data Set
 - Neutral: Including some utterances used in training data set
 - Other emotions: different from the training data set

E-Norm Result

E-Norm	Whole		Male		Female	
	EER	Threshold	EER	Threshold	EER	Threshold
Whole	19.98%	-0. 8682	27.96%	-0. 5685	27.25%	-0. 6544
NL	5.04%	-1. 5824	8. 21%	-1.3874	7. 23%	-1. 3966
НР	21.63%	-0. 7279	29.72%	-0. 3886	30. 21%	-0. 3995
SD	21.89%	-0. 8557	31.81%	-0. 4137	28. 22%	-0. 7672
AX	22.01%	-0.7456	31.90%	-0. 4548	28. 71%	-0. 4682
AG	26.09%	-0. 7432	34. 49%	-0. 4659	35.77%	-0. 4954

E-Norm Results

	Whole	Male	Female	
Whole	20. 56%	15. 99%	17.60%	
NL	51.86%	49.54%	36. 91%	
HP	10.29%	5. 29%	7.84%	
SD	10.32%	2.96%	4. 31%	
AX	6. 10%	4. 49%	1.91%	
AG	4. 78%	-1. 98%	0.94%	

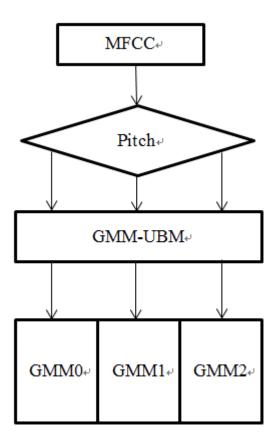
Relative improvements

Pitch-Based Clustering

 Clustering on frames of features

• Each group training into a GMM

• 3 GMMs



Pitch Clustering

	Male(Hz)	Female(Hz)
Group1	0–120	0–120
Group2	120–196	120-290
Group3	>196	>290

Score Fusion

- Average(Score1 + Score2 + Score3)
- Max(Score1, Score2, Score3)

Results

	Whole		Male		Female	
Best	EER	TH	EER	TH	EER	TH
Whole	18.40%	0. 3333	19. 76%	0. 311367	28.13%	0. 4977
NL	14. 18%	0. 386433	18.81%	0.362033	21.11%	0. 5098
HP	19.97%	0. 3777	18.66%	0. 3211	25.63%	0. 6117
SD	16. 56%	0. 273267	19.85%	0. 293967	23. 56%	0. 36
AX	16. 37%	0. 310367	16. 22%	0. 286033	25.93%	0. 4847
AG	21.41%	0. 341533	20.88%	0. 299767	32. 52%	0. 5018

- For male, Group1 gives the best EER
- For female, Group2 gives the best EER
- The erformance of male is better than female

Thanks!