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Abstract

Music embedding often causes significant performance degradation in
automatic speech recognition (ASR). This paper proposes a music-removal
method based on the denoising autoencoder (DAE) that learns and removes
music from music-embedded speech signals. Our study shows that the DAE
model can learn patterns of music in different genres and the DAE-based music
removal offers significant performance improvement for ASR. Furthermore,
involving convolutional feature extraction offers additional performance gains.
Finally, we demonstrate that the music-removal DAE is largely language
independent, which means that a model trained with data in one language can be
applied to remove music from speech in another language, and models trained
with multilingual data may lead to better performance.
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1 Introduction
Music embedding is often observed in speech recordings. For example in movies and

broadcast news, speech signals are often mixed with background music to improve

affection of the expression. Unfortunately, mixing music in speech usually causes

significant performance reduction in automatic speech recognition(ASR) [21, 7].

Some research has been conducted to boost music-embedded ASR and most of

the existing methods focus on music/voice separation. The basic idea is to separate

music and ordinary speech signals according to some human-discovered patterns or

properties of music. For example, an early study [21] utilizes the fact that music

signals tend to be more ‘regular’ and employs ICA to separate speech and music by

subtracting ICA components with the lowest entropy. The authors observed that

the word error rate (WER) drops from 45% to around 35% with this entropy-based

music removal.

Other music/voice separation approaches include the REPEL method that lever-

ages the repeating patterns of music [14, 10, 15], the method based on F0 detec-

tion [16, 3], the method based on harmonic structure tracking [26], and the method

based on spectrum sparseness and temporal continuity of music signals [9]. A large

body of the current research is based on low-rank models, i.e., models that project

music-embedded signals into subspaces that represent speech and music respec-

tively. Among the models that have been proposed, the notable ones are robust

PCA [6], non-negative matrix factorization (NMF) [24, 4, 27, 9, 1, 13, 19] and
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robust NMF [17]. The spectral sparseness and temporal continuity have been ex-

tensively used to select the music components or regularize the separation process

in these low-rank methods [1, 13, 19].

It should be noticed that most of the above separation-based approaches have not

been applied to music-embedded ASR, although performance gains are expected if

they were. A potential problem of the separate-based approaches is that the music

patterns and properties (F0, harmonic structure, etc.) that these methods rely on

are human-designed, which may lead to suboptimal music removal and difficulty in

dealing with the complexity of music signals in different genres. For this reason, the

effectiveness of these methods for ASR is limited, and the performance on music-

removed speech is still far from being satisfactory. This can be seen from the relative

small WER reduction reported in [21].

This paper proposes a learning-based approach. Instead of relying on human dis-

covery, our method learns music patterns from data directly. Specifically, we pro-

mote to learn from music signals a model that represents music patterns, and use

this model to recover clean speech from music-embedded speech. In this study, the

denoising autoencoder (DAE) model is selected to conduct the learning. DAE is a

special implementation of autoencoder (AE), by introducing random corruptions

to the input features in model training. It has been shown that this model is very

powerful in learning low-dimensional representations and can be used to recover

noise-corrupted input [22]. In [11], DAE is extended to a deep recurrent structure

and has been employed to recover clean speech in noisy conditions for ASR. A recent

study employs DAE in de-reverberation [8].

In this study, DAE is used to remove the music component from music-embedded

speech signals. There are several favorable properties that make DAE a suitable

model for this task. First, DAE involves a deep neural network (DNN) structure,

which allows it learning the high-level music patterns layer by layer from raw sig-

nals, such as the repeating patterns and the harmonic structures. Second, the high

freedom associated with the DAE structure enables it to learn music with mul-

tiple melodies, instruments and genres. This is a big advantage compared to the

separation-based approach, as it is always challenging for human to discover a pat-

tern that is suitable to separating all types of music. Finally, the corruption-injection

training allows the model being trained with a small amount of data.

The contribution of the paper is three-fold: first we demonstrate that DAE is

very powerful in music pattern learning and removal in ASR tasks, particularly

for scenarios where the embedded music is in multiple types. Second, the DAE is

extended to a convolutional denoising autoencoder (CDAE) which can learn the

spectral variation associated with music signals in a better way and hence can

produce better music removal. Finally, we demonstrate that the music-removal DAE

is language independent, which means that it is possible to train a general music-

removal DAE with a large amount of data that are in multiple languages.

The rest of the paper is organized as follows: Section 2 discusses some related

works, and Section 3 presents the music-removal DAE and CDAE. The experiments

are reported in Section 4 and the paper is concluded in Section 5.
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2 Related work
This work is closely related to various speech/voice separation approaches. Some

representative works have been discussed in the previous section, e.g., [21, 7]. A big

advantage of the separation-based approach is that it relies on ‘general patterns’

of music such as F0, harmonic structures and repeating patterns. These patterns

are common for most music and so can be well generalized to new music. This

advantage, on the other side, is also a disadvantage since for some music (rap for

example), these patterns are not so clear. The DAE approach does not rely on

human-discovered patterns but learns the patterns from data, and so the general-

izability of the model heavily depends on what music signals have been learned.

Thanks to the power of DAE in learning multiple conditions with the deep struc-

ture, our method is able to learn music patterns of any melody, any instrument and

any genre in a single model, provided that sufficient data of the target music are

available.

This work is also closely related to the DAE research and its applications in speech

signal enhancement, e.g., the study in noise robustness [11] and the study in de-

reverberation [8]. Finally, our work is related to the research on multilingual ASR

where the DNN model has been demonstrated to be effective in learning language-

independent speech features from multilingual training data [18, 23, 20].

It also deserves to mention that music pattern learning has been proposed in the

separation-based framework as well. For example in [7], a model-based separation

approach was proposed where music and speech signals are modelled by two Gaus-

sian mixture models (GMM). The music GMM is trained on the audio prior to

the start of speech, and the clean speech is estimated from the two GMMs. The

authors showed over 8% relative improvement in WER for a real world voice search

ASR system. This improvement is rather marginal, partly attributed to the limited

power of GMMs in modeling music patterns. The DAE-based approach proposed

in this paper is supposed to be much more powerful in pattern learning, however

the disadvantage is that the training requires more data and so can not be adapted

online for each utterance as [7] does.

3 Music removal with DAE and CDAE
3.1 DAE-based music removal

DAE was first proposed to learn robust low-dimensional features [11], and later was

extended to recover the original ‘clean’ signal from a noise-corrupted signal [11, 8].

In the latter case, the network is actually not a typical autoencoder as there is

not a bottleneck layer and the recovered signals are read from the output layer. In

spite of the difference in the network structure, the essential idea of various DAE

implementations remains the same: introduce random corruptions to the input so

that the patterns of the corruptions can be learned and compensated for. It has been

shown that the random corruption-injection is equivalent to adding a second-order

regularization to the objective function, which leads to a more ‘smooth’ model that

is less sensitive to the change of the input [12, 5].

Due to its power to recover the original ‘clean’ signal, DAE can be used to remove

music embedded in speech. The input and the output of a music-removal DAE are

feature vectors (Fbank in this work) that are derived from the same speech signal
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at the same location, but the signals of the input are corrupted by music segments

that are randomly selected from a music repository.

A particular concern of the DAE training is how to generate the random corrup-

tion, i.e., how to select the music segment for each speech frame. We follow the noisy

training strategy proposed in [25], which involves several sampling steps described

as follows.

Firstly, we assume that the embedded music remains unchanged within an utter-

ance. Let n denote the number of music signals in the music repository. For each

utterance, a music signal v is selected randomly following a multinomial distribu-

tion:

v ∼Mult(µ1, µ2, ..., µn).

The parameters {µi} are sampled from a Dirichlet distribution:

(µ1, µ2, ..., µn) ∼ Dir(α1, α2, ..., αn)

where the parameters {αi} are manually set to control the base distribution when

selecting the music signals. This hierarchical sampling approach (Dirichlet followed

by multinomial) simulates the uncertainty of the embedded music in different situ-

ations, e.g., in TV shows or in broadcast news. Note that we allow a special music

type ‘no music’, which means that the speech signal is not corrupted when it is

selected.

After that, sample the music-embedding level, i.e., the signal to noise ratio (SNR).

This sampling follows a Gaussian distribution N (µSNR, σSNR) where µSNR and

σSNR are the mean and variance respectively, and are both manually defined. If the

music is the special type ‘no-music’, then the SNR sampling is not performed.

The next step is to sample an appropriate music segment from the music signal.

This is achieved by choosing a starting point b in the selected music signal following

a uniformed distribution, and then excerpting the music segment starting from b.

The length of excerpted the music segment should equal to the length of the speech

to corrupt.

Finally, the selected music segment is amplified to meet the required SNR level,

and is mixed to the clean speech. In the training phase, features of the music-

embedded speech and the clean speech are derived and are used as the input and

the target to train the DAE; in the test phase, the music-embedded features are fed

into the DAE and the music-removed features are read from the DAE output.

3.2 CDAE-based music removal

A potential shortage of the DAE-based music removal is that the music patterns are

learned ‘blindly’, which means no prior knowledge of music signals has been utilized.

In fact, most of music signals possess unique properties in both the spectral domain

and the temporal domain. These properties have been extensively employed in the

separation-based approach as discussed already in Section 2. In the learning-based

approach, these properties should be employed as well.
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For example, it is well-known that music signals involve strong harmonic struc-

tures, which means that the music spectrum at different frequencies may exhibit a

strong correlation. This correlation suggests that music patterns can be learned lo-

cally with shared parameters across the frequency axis. Additionally, the spectrum

of music signals produced by different instruments, either the same or different

kinds, often exhibits clear variation (shift) in frequency. This variation cannot be

easily addressed by DAE.

We therefore propose to combine the convolutional neural network (CNN) and

DAE. The CNN model involves a convolutional layer that is powerful to learn local

patterns by shared weights of connections, and a pooling layer which can deal with

spatial and temporal variations of the input. These two properties are desirable for

learning music patterns, and can deal with the harmonic structure and frequency

shift respectively.

A CNN-DAE hybrid structure is promoted in this work, as shown in Figure 1,

which involves two convolutional layers and a pooling layer in the DAE network.

This hybrid structure is denoted by CDAE in this study. We found that CDAE can

improve performance of music removal significantly, as will be seen shortly.
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Figure 1 The network structure of CDAE that involves two convolutional layers and one
pooling layer. The LDA transform in DAE is replaced by a CNN structure, as shown in the
red-line box

4 Experiments and Results
This section presents the experiments. We first describe the databases and the

baseline system, and then present the results with the DAE-based and CDAE-based

music removal. The potential of the DAE-based approach in multilingual scenarios

will be finally demonstrated.

4.1 Data and baseline

The Aurora4 database will be used in most of the experiments in this section. It

is an English database and involves about 18 hours of speech in total. Following

the standard setup, the training set and the cross-validation (CV) set consist of

15.1 hours (7138 utterances) and 2.2 hours (1206 utterances) of speech signals,

respectively. The test set consists of 0.65 hours of speech (324 utterances).
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Another database used in the experiments is a subset of the 863 database, which is

in Chinese and contains about 50 hours of speech in total. The training set consists

of 43 hours of speech signals (33279 utterances), and the CV set consists of 2.5 hours

of speech (2080 utterances). Another 5 hours of speech signals (4160 utterances)

are used as the test set.

The music repository involves 4 music signals, which are ‘Pa’ (Piano, Bet-

thoven Moonlight Sonata Chapter 3), ‘Vi’ (Violin, Theme from Schindler’s List),

‘Sy’(Symphony, Radetzky March), and ‘Ra’ (Rap, Nunchaku Jay Chow). These mu-

sic signals are mixed with the training and test data to examine the capability of

DAE/CDAE in learning ‘known’ music. Additionally, we select another piano signal

‘Pa2’ (Chopin Nocturne No.2 Op.9) to examine the performance of the model in

learning ‘out-of-repository’ music.

The baseline ASR system is based on the DNN-HMM hybrid architecture [2]. The

acoustic feature is the 40-dimensional Fbanks. For each frame, the central frame is

concatenated with the left and right 5 frames, forming a 440-dimensional feature

vector, and then an LDA transform is employed to reduce the feature dimension to

200.

The acoustic model is a DNN that contains 4 hidden layers, each involving 1200

units. For the English model, the number of output units is 3356, corresponding

to the number of context-dependent states. For the Chinese model, the number

of output units is 3361. The Kaldi toolkit[1] is used to train the system, and the

training process largely follows the WSJ S5 GPU recipe, with the training criterion

set to cross entropy.

4.2 DAE-based music removal

The input feature of the DAE is totally the same as the input of the DNN acous-

tic model, i.e., 200-dimensional LDA features that are derived from 11-frame-

concatenated Fbanks. The output is simply the 40-dimensional Fbank feature cor-

responding to the central frame of the input. The training process follows a similar

procedure as the DNN training, except that the training criterion is set to the mean

square error. It should be noted that the DAE output is the music-removed Fbank

feature, and therefore can be simply fed into the DNN acoustic model. In this sense,

the DAE-based music removal can be regarded as a special pre-processing and can

be easily integrated in the pipe-line of acoustic feature extraction.

In this experiment, the four music signals are mixed with the training data fol-

lowing the strategy described in Section 3, where we have set µSNR = 5, and

σSNR = 10. Meanwhile, the music signals are mixed with the test data at a fixed

SNR, which we set to 5 dB. These configurations are chosen according to [25]. Ad-

ditional, ‘Pa2’ is used as the ‘out-of-repository’ music and is mixed with the test

data only.

Three scenarios are tested. In the first scenario, only one music signal is used to

corrupt the data in DAE training; in the second scenario (mixA), all the 4 music

signals are involved; in the third scenario (mixB), the training is the same as in

mixA, but the special type ‘no-music’ is involved.

[1]http://kaldi.sourceforge.net/about.html
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WER%
Clean Pa V i Sy Ra Pa2

Base 5.98 49.41 59.31 57.22 54.61 45.60
Pa 6.70 11.10 26.64 30.20 52.36 12.13
V i 6.70 21.42 11.39 31.25 48.08 16.58
Sy 7.03 24.43 27.36 15.46 50.04 21.84
Ra 6.66 29.00 29.09 33.61 13.73 25.86
MixA 6.85 12.89 13.59 18.24 18.05 12.72
MixB 6.49 13.77 14.03 18.49 18.41 12.89

Table 1 Performance on Aurora4 with DAE-based music removal. Each row represents a
music-embedding condition in DAE training, and each column represents a music-embedding
condition in test. The row ‘Base’ presents the baseline system without any music removal in
both training and test.

We conduct the experiment with the Auroa4 database, and the performance in

terms WER is reported in Table 1. From the baseline results, it can be seen that

music embedding seriously degrades the ASR performance. For example, with the

piano music embedded, the WER increases from 6% to 49%. When the DAE-based

music removal is applied, significant performance improvement is obtained in all

the tested scenarios.

Interestingly, involving a particular music in the DAE training improves perfor-

mance on speech embedded by other music, particularly music of the same type.

This can be clearly seen from the row ‘Pa’ in Table 1, where the DAE trained

with music Pa improves test with all other music embedding, especially Pa2 that

is played by piano as well. This observation suggests that different types of music

share some common properties and these properties can be learned by DAE.

Finally, the results in the row mixA and mixB suggest that DAE can learn mul-

tiple music signals in a single model, especially when some training data remain

uncorrupted (mixB). This is highly interesting since it means that a general music-

removal DAE is possible by training with multiple music signals. This general model

can deal with any music, provided that some music signals of the same type have

been involved in the DAE training. For instance, the result on Pa2 has demonstrated

the performance of the general model on out-of-repository (new) music.

4.3 CDAE-based music removal

The second experiment tests the CDAE model which is assumed to learn the music

harmonic structure and frequency variation in a better way. As presented in Sec-

tion 3, the CDAE network involves two convolutional layers and one pooling layer.

The two convolutional layers consist of 4224 and 2048 units respectively, and the

pooling layer consists of 1408 units.

The experiment is conducted on the Aurora4 database, and the configurations are

all the same as in the DAE experiment. The results have been presented in Table 2.

Compared to the results with DAE in Table 1, consistent performance improvement

is observed with the CDAE-based music removal. This confirms our conjecture that

CNN can better learn the music-specific patterns and variations.

4.4 Music removal across languages

Music is assumed to be language-independent, which suggests that the DAE/CDAE

music-removal model can be trained and applied across languages. To test this

conjecture, we learn two monolingual DAE models based on the Aurora4 database
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WER%
Clean Pa V i Sy Ra Pa2

Base 5.98 49.41 59.31 57.22 54.61 45.60
Pa 6.72 9.35 23.80 30.75 47.68 10.03
V i 6.66 21.65 9.90 31.70 46.29 15.25
Sy 6.76 24.50 25.15 12.22 49.58 19.46
Ra 6.36 25.27 26.66 32.04 11.21 19.54
MixA 6.51 11.08 11.16 15.23 14.19 10.49
MixB 6.30 10.43 11.16 15.67 14.30 10.30

Table 2 Performance on Aurora4 with CDAE-based music removal. The notations are the same
as in Table 1.

(in English) and the 863 database (in Chinese) respectively, where only the piano

music ‘Pa’ is embedded. Each of the two models is tested on both the Aurora4 task

and the 863 task, where the test utterances are corrupted by the two piano music

signals ‘Pa’ and ‘Pa2’. In another experiment, a multilingual DAE is trained by

pooling the data of the two databases. Again, the resulting multilingual model is

tested on the two databases respectively.

WER%
clean Pa Pa2

Base 5.98 49.41 45.60
Auraro4 6.70 11.10 12.13
863 9.08 17.42 21.99
Auraro4 + 863 7.16 11.35 13.10

Table 3 ASR performance on the Aurora4 database with the DAE trained with different
databases. Each row presents a training condition, and each column presents a test condition.

The results on the Auroa4 database and the 863 database are presented in Table 3

and Table 4, respectively. Note that the results on the 863 database are reported

in Chinese character error rate (CER). The results on the two databases show the

same trend, that cross-lingual application of the music-removal DAE is possible,

although the performance with the cross-lingual application is still worse than that

with the monolingual application. We tend to believe that this performance gap is

more likely caused by the different acoustic conditions of the two database, rather

than by languages.

It is also interesting to see that the multilingual DAE delivers rather good per-

formance on both the two databases, and the performance is even better than that

with the monolingual DAEs in some cases. Combined with the findings in the previ-

ous section, this suggests that a general music-removal DAE is possible by training

the model with multilingual speech data embedded with multiple music.

CER%
clean Pa Pa2

Base 15.93 67.36 61.69
Auraro4 20.30 41.92 42.44
863 18.57 28.19 29.19
Auraro4 + 863 17.96 27.47 28.27

Table 4 ASR performance on the 863 database with the DAE trained with different databases.
Each row presents a training condition, and each column presents a test condition.

5 Conclusions
This paper presented a new music-removal approach based on DAE. The experi-

mental results on ASR tasks demonstrated that DAE can learn music patterns and
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remove them from music-embedded speech signals. Additionally, the CDAE model,

which involves the CNN structure in DAE, can offer additional performance gains.

We also found that the DAE model can be applied across languages, and a general

music-removal DAE is possible by learning with multilingual data embedded with

multiple music. The future work will investigate more complex music types, and

study the multiple music embedding which involves several music signals in the

same speech segment.
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