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Abstract
Recent advances in neural text-to-speech research have been
dominated by two-stage pipelines utilizing low-level intermedi-
ate speech representation such as mel-spectrograms. However,
such predetermined features are fundamentally limited, because
they do not allow to exploit the full potential of a data-driven
approach through learning hidden representations. For this rea-
son, several end-to-end methods have been proposed. However,
such models are harder to train and require a large number of
high-quality recordings with transcriptions. Here, we propose
WavThruVec – a two-stage architecture that resolves the bot-
tleneck by using high-dimensional WAV2VEC 2.0 embeddings
as intermediate speech representation. Since these hidden acti-
vations provide high-level linguistic features, they are more ro-
bust to noise. That allows us to utilize annotated speech datasets
of a lower quality to train the first-stage module. At the same
time, the second-stage component can be trained on large-scale
untranscribed audio corpora, as WAV2VEC 2.0 embeddings are
time-aligned and speaker-independent. This results in an in-
creased generalization capability to out-of-vocabulary words,
as well as to a better generalization to unseen speakers. We
show that the proposed model not only matches the quality of
state-of-the-art neural models, but also presents useful proper-
ties enabling tasks like voice conversion or zero-shot synthesis.
Index Terms: text-to-speech, intermediate speech representa-
tion, end-to-end learning, voice conversion, zero-shot synthesis

1. Introduction
The rapid development of deep neural networks has led to sub-
stantial improvements in audio quality of text-to-speech (TTS)
systems. Traditionally, TTS pipelines consist of multiple com-
ponents, such as text analysis, acoustic model and vocoder [1].
This modular design has been widely adopted as it decomposes
the challenging problem of alignment between text or phoneme
input and much longer sequences of waveform samples. With
the advances of sequence-to-sequence learning, TTS systems
have been simplified to two-stage pipelines with an acoustic
model that generates acoustic features directly from a text or
phoneme sequence, followed by a vocoder that synthesizes a
waveform (see Figure 1A). To bridge the components, interme-
diate representation in the form of low-level acoustic features
was proposed, with the mel-frequency spectrogram being the
most popular choice across all variety of acoustic models, such
as RNN- [2], CNN- [3], Transformer- [4, 5, 6], and Flow-based
models [7]. Mel-spectrograms became a widely accepted in-
termediate speech representation allowing for simultaneous de-
velopment of performant neural vocoders. A breakthrough has

Audio samples are available at: https://
charactr-platform.github.io/WavThruVec/
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Figure 1: A high-level comparison of TTS architectures: A) a
traditional two-stage pipeline with mel-spectrogram as an inter-
mediate speech representation; B) end-to-end TTS that gener-
ates waveform directly from input text; C) a proposed two-stage
TTS that leverages latent speech representation from the exter-
nal, pretrained model. Green blocks represent learnable neural
modules, red represents predetermined features, while blue rep-
resents hidden representation. The dashed outline indicates that
Wav2Vec is freezed during the training and its parameters are
not updated.

been made with the introduction of autoregressive models for
raw audio [8], but their limitation in inference speed pushed
researchers to investigate faster vocoders capable of parallel
waveform generation such as flow- [9, 10], GAN- [11, 12, 13],
or diffusion-based models [14].

Multi-stage pipelines have been criticized for being prone
to carry over errors from module to module and requiring more
manual labor and feature engineering (e.g. text analysis) [1].
What is more, the predetermined speech representation is of-
ten considered a bottleneck, which causes the necessity of addi-
tional finetuning [15]. The subsequent advances in neural audio
synthesis have encouraged researchers to explore fully end-to-
end models that discard predefined intermediate features, but
directly generate waveforms conditioned on input text (see Fig-
ure 1B). This approach makes it possible to learn hidden, high-
dimensional representations throughout the network and it has
led to several promising results [16, 17, 18, 19].

In this work we show that by replacing low-level acous-
tic features with latent speech representations, we can still ben-
efit from a practical, two-stage architecture – such as reusing
trained components in other models – while solving problems
that are typically addressed with end-to-end models. Specifi-
cally, we use a pretrained WAV2VEC 2.0 model [20], that has
become state-of-the-art in speech recognition by learning high-
level contextualized representations of speech units through
self-supervision, followed by a fine-tuning procedure on an-
notated data. Our architecture consists of two components:
An encoder (text2vec) which converts text input to a WAV2VEC
embeddings and a decoder (vec2wav) which converts these em-
beddings to a waveform (see Figure 1C). To our knowledge,
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Table 1: Data requirements for different architectures. HQ
stands for high-quality audio, which is determined by a number
of factors such as recording equipment or background noise. We
relax this requirement in our encoder (text2vec).

Two-stage TTS E2E WavThruVec
Model Vocoder Model Enc. Dec.

HQ audio + + + – +
Transcribed + – + + –

this is the first work that successfully uses a pretrained, self-
supervised speech representation as intermediate acoustic rep-
resentation, making TTS a kind of a downstream task.

Since WAV2VEC – as a speech recognition model – is sup-
posed to produce linguistic features, the second-stage compo-
nent of our TTS pipeline becomes a combination of acoustic
model and vocoder, making it inherently more difficult to re-
cover a waveform, compared to a typical vocoder conditioned
on mel-spectrograms. However, such high-level intermediate
representations have a wide range of benefits. The encoder
(text2vec) can be trained on low-quality transcribed audio, since
WAV2VEC 2.0 is robust to noise. The second component
(vec2wav) can be trained on a separate dataset of high-quality
speech recordings without text annotations, because the latent
speech features in the intermediate representation are already
time-aligned (see Table 1). This can be considered as a kind of
semi-supervision, since only part of the training data needs to
be annotated, solving a recurrent issue in TTS that recordings
should be both of high quality and contain transcripts.

In the present paper, we show that training the decoder
on large untranscribed speech datasets, containing an order of
magnitude more speakers than typical TTS dataset, (i) leads to
strong generalization capability to unseen speakers, enabling
zero-shot synthesis. At the same time, the encoder can take
advantage of the widely available, varying audio quality, tran-
scribed datasets in order to implicitly learn pronunciation, re-
lieving the need for external grapheme-to-phoneme models, re-
sulting in (ii) better generalization to out-of-vocabulary words.
Furthermore, we show that WAV2VEC embeddings – in contrast
to acoustic features such as mel-spectrograms – are speaker-
independent, (iii) enabling voice conversion by design.

2. Related work
As we discard acoustic-level intermediate features in favor of
high-level, contextualized representations of speech units, our
approach can be compared to TTS methods that generate au-
dio waveforms directly from linguistic features. WaveNet [8]
was introduced as such a model, although it is now more com-
monly employed as a vocoder that converts mel-spectrograms
into audio waveforms. GAN-TTS [21] also utilizes a sequence
of linguistic features as an input to the model. However, such
linguistic features are derived from text-analysis modules that
typically require hand-crafted annotations such as phonemes,
syllables, durations, stress or intonation. To this end, we uti-
lize hidden activations of the model that learnt the structure of
speech without such supervision.

Self-supervised speech representations have been recently
demonstrated to be useful for the task of resynthesis and voice
conversion [22], however the text-to-speech problem hasn’t
been addressed. The subsequent work [23] further investigates
self-supervised speech representations in the context of generat-
ing spoken language, but employs abstract pseudo-text features
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Figure 2: Our architecture consists of an encoder (text2vec) and
a decoder (vec2wav).

to provide linguistic conditioning. Inspired by these works we
propose a downstream task of applying these high-level speech
representations for text-to-speech.

3. Method
As in the typical two-stage TTS pipeline, the proposed archi-
tecture is composed of two neural networks that can be trained
independently (Figure 2). To bridge the components we use hid-
den activations of WAV2VEC 2.0 [20] for a particular audio sam-
ple. Specifically, we use pretrained checkpoint of Wav2Vec 2.0
Base model, finetuned on 960 hours of LibriSpeech. Although
the presented two-stage architecture with latent, learnt interme-
diate representation is a high-level design and can be realized
with a variety of neural submodules, we introduce WavThruVec
– a baseline model consisting of Transformer-based text2vec
and GAN-based vec2wav.

3.1. text2vec

The first-stage component of our pipeline mostly follows the
FastSpeech [5] architecture with two blocks of Feed-Forward
Transformers (FFT) consisting of a self-attention and 1D con-
volutional network (Figure 2A). Instead of using a teacher-
based length regulator between the FFT blocks as in the origi-
nal work, we utilize unsupervised Monotonic Alignment Search
introduced by [7]. We specifically train soft and hard align-
ments with additional diagonal prior as in [24]. The soft align-
ment matrix Asoft ∈ RN×T is based on the learned pair-
wise affinity between all text tokens φ ∈ Φ and WAV2VEC
2.0 activations x ∈ X of lengths N and T respectively. The
forward-backwards algorithm is used to maximize the likeli-
hood P (st = φ | xt), where st is a random variable for a text
token aligned at timestep t with target xt. To obtain a binary
alignment mapAhard, the Viterbi algorithm is used, and to fur-
ther close the gap between soft and hard distributions, their KL-
divergence is minimized: Lbin = Ahard � logAsoft. Hard
alignment serves as a target for the duration predictor that is
trained via Mean Squared Error loss (MSE) to be used at infer-
ence time. Similarly, the model optimizes MSE between pre-
dicted and target speech representation. For the multi-speaker
setup, we condition the first FFT block on the speaker embed-
ding that is obtained through feeding the target sequence into
a series of convolution layers followed by channel-dependent
frame attention pooling [25]. Such an encoder is supposed to
capture the style of a particular speaker regarding rhythm and



pace, making it possible to use it in a zero-shot manner.

3.2. vec2wav

The role of the second-stage component is to generate an au-
dio waveform conditioned on hidden activations of WAV2VEC
2.0 (Figure 2B). Vec2wav is a Generative Adversarial Network,
based on the HiFi-GAN [13], consisting of a fully convolutional
generator and several sub-discriminators. The generator upsam-
ples input features through the sequence of transposed convolu-
tions followed by residual blocks of dilated convolutions. Sim-
ilarly to [21], we introduce Conditional Batch Normalization to
condition the network on the speaker embedding between the
residual blocks at different temporal resolutions. Each Condi-
tional Batch Normalization is preceded by a linear network that
takes the speaker embedding concatenated with a vector of ran-
dom numbers from a normal distribution. We synthesize speech
at a sampling rate of 32 kHz while our input features have tem-
poral resolution of 50 Hz, resulting in 640x upsampling factor,
compared to 256x of original HiFi-GAN. Therefore the config-
uration of the generator was changed for upsample rates to a
sequence of [5, 4, 4, 2, 2, 2] with corresponding kernel sizes
[11, 8, 8, 4, 4, 4], while the hyper-parameters of residual blocks
are the same as in HiFi-GAN V1. Additional multi-period sub-
discriminators are added with periods of [13, 17, 19] to obtain
the receptive field of similar length. To enable multi-speaker
capabilities, we do not use learnable embeddings through a
look-up table, but rather jointly train a speaker encoder that
takes mel-spectrogram of a particular sample as an input and
produces fixed-length embedding. Specifically ECAPA-TDNN
[25] architecture is used as a speaker encoder.

4. Experiments
4.1. Datasets

As the targets of the first-stage module are noise-robust, we can
train on speech corpora with varying audio quality, typically
designed for automatic speech recognition. We can use audio
recordings sampled at as low as 16 Khz, since WAV2VEC 2.0
has learnt speech representation on such data. In particular, we
use LibriSpeech [26] and CommonVoice [27] English datasets,
comprising a total of about 3,000 hours of text-annotated speech
recordings. We do not use any rule-based text normalization or
phonemization methods, but train the model on raw character
inputs.

Vec2wav, on the other hand, can be trained without text
transcriptions, but instead requires higher quality speech data,
as it affects the overall naturalness of generated samples. We
therefore use AVSpeech [28], a large-scale audio-visual dataset
comprising speech video clips with no interfering background
noises, initially intended for speech separation and audio-visual
event localization. We collected only audio recordings in En-
glish and performed the following preprocessing steps: (1) each
sample was processed using the NeMo toolkit [29] for voice ac-
tivity detection to get rid of unspoken fragments, (2) followed
by speaker diarization to ensure there is a single speaking per-
son per clip; (3) a pretrained neural model for sound event de-
tection [30] was used to filter out the recordings with much
background sound, and (4) the audio tracks were downsampled
to 32 kHz. As a result, we obtained high quality recordings
of 11,876 distinct speakers. We additionally use Hi-Fi TTS
[31] and VCTK [32] datasets. For the finetuning stage of both
text2vec and vec2wav models, only VCTK dataset is used.

4.2. Training

Text2vec is trained using the LAMB optimizer with learning
rate of 0.1, β1 = 0.9, β2 = 0.98, ε = 10−9, similarly to [6].
We follow the training schedule of [24], to add the binarization
term and hard alignments to the loss function.

The discriminators and the generator of the GAN-based
vec2wav are trained as in [13], using the AdamW optimizer
with β1 = 0.8, β2 = 0.99, weight decay λ = 0.01 and learn-
ing rate decaying by a 0.999 factor in every epoch with an ini-
tial value of 2 ·10−4. Our intermediate representation is already
aligned, so we do not have to incorporate dynamic time warping
to relax alignment constraint in the spectrogram prediction loss
as in [17]. However, we linearly decay its weight coefficient to
make the loss function increasingly dependent on the GAN ob-
jective. Similarly to [16, 17], we adopt the windowed generator
training with a training window of 0,64 s.

Both text2vec and vec2wav were trained on 4 NVIDIA
V100 GPUs with batch sizes of 32 and 24, respectively. Af-
ter 800k iterations of pretraining, both models are finetuned for
80k iterations on VCTK dataset with a 10-fold lower value of
initial learning rate.

4.3. Experimental Setup for Comparison

We compare our model with the following implementations:
Tacotron 21, Fastpitch2 and VITS3. Since Tacotron 2 and Fast-
pitch repositories don’t come with pretrained checkpoints on
VCTK datasets, we train our own up to 500k iterations on 4
NVIDIA V100 GPUs. Similarly to [19], for both Tacotron 2
and Faspitch, we use HiFi-GAN as a second-stage model, and
further finetune it for 200k iterations with Tacotron 2 outputs
via teacher-forcing.

We conduct crowd-sourced listening tests to (i) evaluate the
overall quality of the samples and (ii) evaluate the generaliza-
tion capability to unseen words. 36 US participants (17 female,
19 male) took part in the experiment. The age ranged from
19 to 63 years old (M = 36, SD = 11). All participants were
recruited from Amazon Mechanical Turk (AMT) with require-
ment of minimal age of 18 years, 99% or higher approval rate on
at least 5,000 previous tasks on AMT, residency in the US and
wearing headphones (had to pass a pre-screening headphone
check [33]). Participants provided informed consent in accor-
dance with the Max Planck Society Ethics Council approved
protocol (application 2021 42). For the evaluation, all audio
samples are normalized to -3 dBFS, resampled to 22,05 kHz,
and the beginning and trailing silence is trimmed. Raters were
allowed to evaluate each audio clip once.

5. Results
5.1. Speech Synthesis Quality

To evaluate the overall speech synthesis quality we collect Mean
Opinion Score (MOS) for all the neural models outputs as
well as ground truth recordings. For a random sample from
VCTK dataset, participants were asked to rate the naturalness
of the speech on a 5 point scale from 1 to 5. The results
show that WavThruVec outperforms other TTS systems, with
little difference from the ground truth score (Table 2). Interest-
ingly, the objective measure of similarity between the generated
voices and the real ones, shows that WavThruVec performs the

1https://github.com/NVIDIA/tacotron2
2https://github.com/NVIDIA/DeepLearningExamples
3https://github.com/jaywalnut310/vits
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Figure 3: Voice conversion: the trajectories of fundamental fre-
quency for particular speakers. The red bold line indicates
the input utterance, while the other lines represent converted
voices.

Table 2: Comparison of evaluated MOS and pronunciation er-
rors (% correct) with 95% confidence intervals

Model MOS (CI) % correct (CI)
Ground Truth 4.17 (±0.10) –
Tacotron 2 3.92 (±0.13) 0.78 (±0.05)
FastPitch 3.67 (±0.12) 0.82 (±0.05)
VITS 3.99 (±0.12) 0.86 (±0.05)
WavThruVec 4.09 (±0.10) 0.89 (±0.04)

worst among the compared models. We hypothesize that fur-
ther finetuning on VCTK dataset would lead to better similarity
score, however sacrificing the generalization capability to un-
seen voices, that we demonstrate in section 5.4.

5.2. Generalization to Unseen Words

To prepare an out-of-vocabulary list, we took a collection of
English words (384k)4 and removed those that were seen in any
of the training sets. Then by querying SKELL5 with random
words from the list, we collected valid English sentences and
synthesized them with the neural models. Since these words are
out of the open-sourced pronouncing dictionaries, we conduct
crowd-sourced listening tests to evaluate pronunciation errors.
The results showing that WavThruVec outperforms other TTS
systems are presented in Table 2.

5.3. Voice conversion

We can bypass the text encoder (text2vec) and directly provide
linguistic features for the decoder (vec2wav) by feeding a par-
ticular speech sample through WAV2VEC 2.0. Experimentally,
we found out that such features can be then synthesized by
vec2wav, conditioned on different speaker embeddings. It re-
sults in different voice characteristics, corresponding to the par-
ticular speakers. This implies that intermediate features we use
in our pipeline are speaker-independent, enabling high-fidelity
voice conversion. The trajectory of fundamental frequency for
converted voices shows that the prosody of an input utterance is
substantially preserved. However, individual phonetic segments
can vary between speakers (Figure 3b), while VITS forces the
converted voice to match the input one’s characteristics (Figure
3a). This is particularly evident, for example, in the case of the
source speaker’s speech impediment, which will be preserved
throughout all the converted voices. In contrast, WavThruVec
discards most of the acoustic properties through intermediate

4Wordlist 3, https://www.keithv.com/software/wlist/
5https://skell.sketchengine.eu/

Table 3: Averaged objective measure of similarity between gen-
erated outputs and ground truth samples. Values represent co-
sine similarity between speaker embeddings from an external
speaker verification model [25]. For zero-shot TTS we evaluate
different lengths of a target-speaker sample.

Tacotron 2 Fastpitch VITS WavThruVec
Text-to-speech

0.65 0.64 0.69 0.61
Voice conversion

– – 0.62 0.64
Zero-shot text-to-speech

1 s – – – 0.29
3 s – – – 0.43
10 s – – – 0.43
30 s – – – 0.44

representation and recovers a waveform highly similar to the
target speaker. This is confirmed by the objective similarity re-
sults in Table 3.

5.4. Zero-shot text-to-speech

WavThruVec is not constrained to synthesize voices only from
the training set and it can easily obtain target speaker em-
bedding from rhythm and speaker encoders given a particular
speech sample. Moreover, we used an unprecedented number of
training voices, as we were not limited to the transcribed record-
ings. To evaluate whether it led to increased generalization ca-
pability to out-of-training speakers, we use the DAPS [34] as
a test set of 10 male and 10 female unseen voices. To calcu-
late the speaker and rhythm embeddings, we randomly take a
variable-length sample from reference, target-speaker record-
ing, and pass it through rhythm and speaker encoders. Then
they serve as conditioning for both text2vec and vec2wav mod-
ules. We show that with only 3 seconds of a reference recording,
WavThruVec is able to faithfully reproduce an out-of-sample
voice, however there is still a significant gap between similarity
score of seen and unseen voices (Table 3). Note that such an
excerpt of a reference recording is not used to adapt the param-
eters of the model and all that is needed is one forward pass. Al-
though the objective similarity score is not significantly higher
for the reference recordings longer than 3 seconds, we internally
found out that embeddings calculated from 10 and 30 seconds
long samples resulted in higher subjective quality.

6. Conclusions
In this work, we demonstrate that by using latent intermedi-
ate speech representation instead of predetermined features, we
combine the advantages of end-to-end learning with the prac-
ticality of a two-stage pipeline. This novel procedure also in-
troduce weaker data requirements, which allows us to lever-
age additional speech datasets, resulting in less pronunciation
errors and zero-shot synthesis capabilities. Most importantly,
WavThruVec receives the highest scores in the crowd-sourced
listening tests with regards to speech naturalness, outperforming
state-of-the-art TTS systems. Although we use WavThruVec as
a two-stage architecture, future work can explore joint training
with a WAV2VEC-like objective. Extending this approach with
additional modules e.g. for prosody modeling, may lead to fur-
ther improvements. Taken together, our results show the power
of latent speech representation for deep generative modeling.
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