arXiv:1603.04351v1 [cs.CL] 14 Mar 2016

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department
Bar-1lan University
Ramat-Gan, Israel
eli kip@mail.com

Yoav Goldberg
Computer Science Department
Bar-1lan University
Ramat-Gan, Israel
yoav. gol dberg@mai | . com

Abstract arc-factored (first order) models (McDonald, 2006),

in which the scoring function for a tree decomposes

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BILSTMs). Each sen-
tence token is associated with a BiLSTM vec-
tor representing the token in its sentential con-
text, and feature vectors are constructed by
concatenating a few BILSTM vectors. The
BILSTM is trained jointly with the parser ob-
jective, resulting in very effective feature ex-
tractors for parsing. We demonstrate the ef-
fectiveness of the approach by applying it to
a greedy transition based parser as well as to
a globally optimized graph-based parser. The

over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms
(Martins et al., 2009; Koo and Collins, 2010). The
basic transition-based parsers work in a greedy man-
ner, performing a series of locally-optimal decisions,
and boast very fast parsing speeds. More advanced
transition-based parsers introduce some search into
the process using a beam (Zhang and Clark, 2008)
or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing framework

resulting parsers have very simple architec-
tures, and match or surpass the state-of-the-art
accuracies on English and Chinese.

being used, a crucial step in parser design is choos-
ing the rightfeature function for the underlying sta-
tistical model. Recent work (see Section 2.2 for an
overview) attempt to alleviate parts of the feature
function design problem by moving from linear to

The focus of this paper is on feature represerpon—linear models, enabling the modeler to focus on
tation for dependency parsing, using recent teclit small set of “core” features and leaving it up to the
niques from the neural-networks (“deep learning”ynachine-learning machinery to come up with good
literature. Modern approaches to dependency par§ature combinations (Chen and Manning, 2014; Pei
ing can be broadly categorized into graph-base@ft al.. 2015; Lei et al., 2014; Taub-Tabib et al.,
and transition-based parsers (Kubler et al., 2008%015). However, the need to carefully define a set
Graph-based parsers (McDonald, 2006) treat pargf core features remains. For example, the work
ing as a search-based structured prediction proBf (Chen and Manning, 2014) uses 18 different el-
lem in which the goal is learning a scoring func-€ments in its feature function, while the work of
tion over dependency trees such that the correct tré@ei et al., 2015) uses 21 different elements. Other
is scored above all other trees. Transition-basediorks, notably (Dyer et al., 2015; Le and Zuidema,
parsers (Nivre, 2004; Nivre, 2008) treat parsing ad014), propose more sophisticated feature represen-
a sequence of actions that produce a parse tree, datons, in which the feature engineering is replaced
a classifier is trained to score the possible actions #fth architecture engineering.

each stage of the process and guide the parsing prod4n this work, we suggest an approach which is
cess. Perhaps the simplest graph-based parsers mgch simpler in terms of both feature engineering

1 Introduction

http://arxiv.org/abs/1603.04351v1

and architecture engineering. Our proposal (Sectigsrovements, with accuracies of 93.6 UAS (English)
3) is centered around BiRNNSs (Irsoy and Cardieand 87.3 UAS (Chinese) for a greedy transition-
2014; Schuster and Paliwal, 1997), and more specibased parser with 11 features, and 93.3 UAS (En)
ically BiLSTMs (Graves, 2008), which are strong/ 86.6 (Ch) for a greedy transition-based parser with
and trainable sequence models (see Section 2.3)features.
The BILSTM excels at representing elements in
a sequence (i.e., words) together with their con2 Background and Notation
texts, capturing the element and an “infinite” win-)
dow around it. We represent each word by its giLNotation We usez:., to denote a sequence of
STM encoding, and use a concatenation of a mif€Ctorsz1, -+, x,. Fy(-) is a function parameter-
imal set of such BILSTM encodings as our featurd?€d with parameters. We write F.(-) as a shortcut
function, which is then passed to a non-linear scof® £¢, — an instantiation o with a specific set of
ing function (multi-layer perceptron). Crucially, the Parameters;. We useo to denote a vector con-
BiLSTM s trained with the rest of the parser in orde/catenation operation, and;] to denote an indexing
to learn a good feature representation for the parsifPeration taking théth element of a vector.
problem. If we set aside the inherent complexity o
the BILSTM itself and treat it as a black box, our
proposal results in a frustratingly simple feature exraditionally, state-of-the-art parsers rely on linear
tractor. models over hand-crafted feature functions. The fea-
We demonstrate the effectiveness of the approadhre functions look at core components (e.g. “word
by using the BILSTM feature extractor in two pars-on top of stack”, “leftmost child of the second-to-
ing architectures, transition-based (Section 4) d@ep word on the stack”, “distance between the head
well as a graph-based (Section 5). In the graphand the modifier words”), and are comprised of sev-
based parser, we jointly train a structured-predictiogral templates, where each template instantiates a bi-
model on top of a BiLSTM, propagating errors fromnary indicator function over a conjunction of core
the structured objective all the way back to the BiL-elements (resulting in features of the form “word on
STM feature-encoder. To the best of our knowledgdpp of stack is X and leftmost child is Y and ...”).
we are the first to perform such end-to-end training he design of the feature function — which compo-
of a structured prediction model and a recurrent feazents to consider and which combinations of com-
ture extractor. ponents to include — is a major challenge in parser
Aside from the novelty of the BILSTM feature design. Once a good feature function is proposed
extractor and the end-to-end structured training, wig a paper it is usually adopted in later works, and
rely on existing models and techniques from theometimes tweaked to improve performance. EXx-
parsing and structured prediction literature. We sticRmples of good feature functions are the feature-set
to the simplest parsers in each category — greedy iproposed by Zhang and Nivre (2011) for transition-
ference for the transition-based architecture, andlsed parsing (including roughly 20 core compo-
first-order, arc-factored model for the graph-basedents and 72 feature templates), and the feature-set
architecture. Despite the simplicity of the parsingoroposed by McDonald et al (2005) for graph-based
architectures and the feature functions, we achieygarsing, with the paper listing 18 templates for a
state-of-the-art parsing accuracies in both Englistirst-order parser, and the MSTParser’s first-order
(93.2 UAS) and Chinese (86.4 UAS), using a firstfeature-extractor code containing roughly a hundred
order parser with two features and while trainingeature templates.
solely on Treebank data, without relying on semi- The core features in a transition-based parser usu-
supervised signals such as pre-trained word emally look at information such as the word-identity
beddings (Chen and Manning, 2014), word-clusterand part-of-speech (POS) tags of a fixed number of
(Koo et al., 2008), or techniques such as tri-trainingvords on top of the stack, a fixed number of words
(Weiss et al., 2015). When including also pre-on the top of the buffer, the modifiers (usually left-
trained word embeddings, we obtain further immost and right-most) of items on the stack and on the

E.l Feature Functionsin Dependency Parsing

buffer, the number of modifiers of these elements, The above works tackle the effort in hand-crafting
parents of words on the stack, and the length of theffective feature combinations. A different line of
spans spanned by the words on the stack. The comerk attacks the feature-engineering problem by
features of a first-order graph-based parser usuakyiggesting novel neural-network architectures for
take into account the word and POS of the head amhcoding the parser state, including intermediately-
the modifier items, as well as the POS-tags of thkuilt subtrees, as vectors which are then fed to non-
items around to the head and the modifier, the PQffiear classifiers. In the work of Dyer et al (2015),
tags of items between the head and the modifier, atide entire stack and buffer of a transition-based
the distance and direction between the head and tparser are encoded as a stack-LSTMs, where each

modifier. stack element is itself based on a compositional rep-
resentation of parse trees. Le and Zuidema (2014)
2.2 Related Research Efforts encode each tree node as two compositional repre-

Coming up with a good feature-set for a parser is sentations capturing the inside and outside structures

hard and time consuming task, and many researchéund the node, and feed the representations into
attempt to reduce the required manual efforts. Th@ reranker. A similar reranking approach, this time
work of Lei et al (2014) suggest a low-rank tenbased on convolutlc_)nal n(_eura_l networks, is taken by
sor representation to automatically find good feaénu €t al (2015). Finally, in Kiperwasser and Gold-
ture combinations. Taub-Tabib et al (2015) suggestRe"d (2016) we present an Easy-First parser based
kernel-based approach to implicitly consider all pos?™ & novel hierarchical-LSTM tree encoding.

sible feature combinations over sets of core-features. In contrast to these, the approach we present in
The recent popularity of neural-networks prompteéhis work results in much simpler feature functions,
a move from templates of sparse, binary indicatoyithout resorting to elaborate network architectures
features to dense core feature encodings fed inf§ COmpositional tree representations.

non-linear classifiers. Chen and Manning (2014) en- o

code each core feature of a greedy transition-baséd® Bidirectional Recurrent Neural Networks
parser as a dense low-dimensional vector, and tiRecurrent neural networks (RNNs) are statistical
vectors are then concatenated and fed into a noarners for modeling sequential data. An RNN al-
linear classifier (multi-layer perceptron) which canows to model theth element in the sequence based
potentially capture arbitrary feature combinationsgn the past — the elements.; up to and including
Weiss et al (2015) showed further gains using thg. The RNN model provides a framework for condi-
same approach coupled with a somewhat improvatbning on the entire history;.; without resorting to

set of core features, a more involved network athe Markov assumption which is traditionally used
chitecture with skip-layers, beam search-decodingor modeling sequences. RNNs were shown to be
and careful hyper-parameter tuning. Pei et al (201%apable of learning to count, as well as to model line
apply a similar methodology to graph-based pardengths and complex phenomena such as bracketing
ing. While the move to neural-network classi-and code indentation (Karpathy et al., 2015). Our
fiers alleviates the need for hand-crafting featuresroposed feature extractors are based on a bidirec-
combinations, the need to carefully define a set afonal recurrent neural network (BiRNN), an exten-
core features remain. For example, the feature region of RNNs that take into account both the past
resentation in (Chen and Manning, 2014) is a cong,.; and the futurez;.,. We use a specific flavor
catenation of 18 word vectors, 18 POS vectors angk RNN called a long short-term memory network
12 dependency-label vectors. (LSTM). For brevity, we treat RNN as an abstrac-
~Tin all of these neural-network based approaches, the Vetion,_ without gett?ng into the mathematical details of
tor representations of words were initialized using pBéEH’Ed the implementation of the RNNs and LSTMs. For
word-embeddings derived from a large corpus external to thiirther details on RNNs and LSTMs, the reader is

training data. This puts the approaches in the semi-sugemivi referred to (Goldberg, 2015; Cho, 2015).
category, making it hard to tease apart the contributioh@fiu-
tomatic feature-combination component from that of theisem supervised component.

The recurrent neural network (RNN) abstractiorGoing deeper A deep RNN (or k-layer RNN) is
is a parameterized functionNRiy(x1.,,) mapping a composed oft RNN functions RINy,--- , RNNg
sequence of. input vectorsei.,,, z; € R%» to a se- that feed into each other: the outm{tn of RNNy
quence ofn output vectorshy.,, h; € R%ut, Each becomes the input of RV, ;. Stacking RNNs in
output vectorh; is conditioned on all the input vec- this way was empirically shown to be effective. Fi-
torsxy.;, and can be thought of assammary of the nally, in adeep bidirectional RNN, both RNz and
prefix z1.; of x1.,. In our notation, we ignore the RNNg are k-layer RNNs, and IERNNZ(xl:n,z') =
intermediate vector&;.,_; and take the output of vf = k%, o h% .. In this work, we use BiRNNs and
RNNg(z1.,,) to be the vectoh,,. deep—Bi7RNNs’interchangeably, specifying the num-

A bidirectional RNN is composed of two RNNSs, ber of layers when needed.

RNNgr and RINg, one reading the sequence in its . . .
F R g Seque Historical Notes RNNs were introduced by
regular order, and the other reading it in revers

! eElamn (Elman, 1990), and extended to BiRNNs
Concretely, given a sequence of vecteis, and a

L , ; N by (Schuster and Paliwal, 1997). The LSTM vari-
gﬁzge;;ndex, the function BRNNy (1.5, 7) Is de ant of RNNs is due to (Hochreiter and Schmidhu-

ber, 1997). BILSTMs were recently popularized by
BIRNNg(z1.n,7) = RNNp(21.;) o RNNg(z,;) Graves (2008), and deep BiRNNs were introduced
to NLP by Irsoy and Cardie (2014), who used them

The vectorv; = BIRNN(z1.,,2) iS then a represen- .
v; (T1m, 1) P for sequence tagging.

tation of theith item in x.,,, taking into account
both the entire history,; and the entire future... 3 Qur Approach
We can view the BIRNN encoding of an itefras

representing the itemtogether with a context of an We propose to replace the hand-crafted feature func-
infinite window around it. tions in favor of minimally-defined feature functions

))) which make use of automatically learned Bidirec-
Computational ~ Complexity Computing the ional LSTM representations.

BiRNN vectors encoding of théth element of a Gjen ann words input sentence with words
sequenceri., requiresO(n) time for computing ,, ', together with the corresponding POS
the two RNNs and concatenating their OUtpUtStagstl,...,tn,z we associate each worg and POS
A naive approach of computing the bidirectionalti with embedding vectors(w;) ande(t;), and cre-
representation of alh elements result inO(n?) ate a sequence of input vectars,, in which each

computation. However, it is trivial to compute .. is 5 concatenation of the corresponding word and
the BIRNN encoding of all sequence items INPOS vectors:

linear time by pre-computing RNNz;.,,) and

RNNg(zn:1), keeping the intermediate representa- — x; = e(w;) o e(p;)

tions, and concatenating the required elements as

needed. The embeddings are trained together with the model.
This encodes each word in isolation, disregarding its

BIRNN Training In't'a”yf the B'RNN e_ncodlng_s context. We introduce context by representing each
v; do not capture any particular information. Du”nginput element as its (deep) BILSTM vector:
training, the encoded vectots are fed into further '

network layers, until at some point a prediction is 4, = BILSTM(1.y, 1)

made, and a loss is incurred. The back-propagation

algorithm is used to compute the gradients of all th®ur feature functions is then a concatenation of a
parameters in the network (including the BIRNN pasmall number of BiLSTM vectors. The exact fea-
rameters) with respect to the loss, and an optimizéure function is parser dependent and will be dis-
is used to update the parameters according to tlsessed when discussing the corresponding parsers.

gradients. The training procedure causes the BiRN 2In this work the tag sequence is assumed to be given, and

function to extract from the input sequence, the i, practice is predicted by an external model. Future work wi
relevant information for the task task at hand. address relaxing this assumption.

The resulting feature vectors are then scored usingaarives at a terminal configuration, and a parse tree
non-linear function, namely a multi-layer perceptrons read off the terminal configuration. In a greedy
with one hidden layer (MLP): parser, a classifier is used to choose the transition
to take in each configuration, based on features ex-
MLPy(z) = W? - tanh(W' -z +b') + b tracted from the configuration itself. The parsing al-

whered = {W, W2 b!,52} are the model parame- gorithm is presented in algorithm 1 below:

ters. i i i Algorithm 1 Greedy transition-based parsing
Beside using the BiLSTM-based feature func -
1. Input: sentences = wi,..., Ty, t1,...,tn,

tions, we make use of standard parsing techniques. parameterized functionc®Re(-) with param-
Crucially, the BiLSTM is trained jointly with the rest etersd
of the parsing objective. This allows it to learn rep- _ '
resentations which are suitable for the parsing task.z' o INITIAL (5)

. : : 3: whilenot TERMINAL (¢) do

Consider a concatenation of two BILSTM vectors f « argmax SCORE@(QS(c) t)

(v; o v;) scored using an MLP. The scoring function . teLEGAL() ’
has access to the words and POS-tags afdv;, as > ¢ ¢ ()
well as the words and POS-tags of the words in anS: return tree(c)
infinite window surrounding them. As LSTMs are
known to capture length and sequence position in- Given a sentence, the parser is initialized with
formation, it is very plausible that the scoring func-the configuratiornc (line 2). Then, a feature func-
tion can be sensitive also to the distance betwieertion ¢(c) represents the configuratienas a vector,
andj, their ordering, and the sequential material bewhich is fed to a scoring function C®RE assign-
tween them. ing scores to (configuration,transition) paire GRE
scores the possible transitios and the highest
trained, parsing is performed by first computing th sc_oring t_ransitiorf s chc_>sen (_Iine 4). Th_e transition

’ % is applied to the configuration, resulting in a new

BIiLSTM encodingw; for each word in the sentence . .
: . . . parser configuration. The process ends when reach-
(alinear time operation).Then, parsing proceeds as:)
L ing a final configuration, from which the resulting
usual, where the feature extraction involves a con- : .
arse tree is read and returned (line 6).

:) p
catenation of a small number of the pre-computed Transition systems differ by the way they define

vectors.) . .)
configurations, and by the particular set of transi-

4 Transition-based Parser tions available to them. A parser is determined by
the choice of a transition system, a feature function

We begin by integrating the feature extractor in % and a scoring function ®RE Our choices are
transition-based parser (Nivre, 2008). We followyetailed below.

the notation in (Goldberg and Nivre, 2013). The

transition-based parsing framework assumes a trahhe Arc-Hybrid System Many transitions sys-
sition system, an abstract machine that processi¥ns exist in the literature. In this work, we use
sentences and produces parse trees. The transitlbg arc-hybrid transition system (Kuhimann et al.,
system has a set of configurations and a set of trag011), which is similar to the more popular arc-
sitions which are applied to configurations. Whergtandard system (Nivre, 2004), but for which an ef-
parsing a sentence, the system is initialized to an inficient dynamic oracle is available (Goldberg and
tial configuration based on the input sentence, arldivre, 2012; Goldberg and Nivre, 2013). In the arc-
transitions are repeatedly applied to this configurdiybrid system, a configuration = (o, 3,1") con-

tion. After a finite number of transitions, the systen$ists of a stacks, a buffer 5, and a setl" of de-
pendency arcs. Both the stack and the buffer hold

3While the BiLSTM computation is quite efficient as it is, - T .
if using a GPU the BILSTM encoding can be performed overmteqer indices to sentence elements. Given a sen-

many of sentences in parallel, making its computation cest al€NCes = w1, ..., Wy, t1,..., I, the system is ini-
most negligible. tialized with an empty stack, an empty arc set, and

Parsing-time Complexity Once the BIiLSTM is

8 =1,...,n,R00T, whereR0OT is the special root already built structure. The high parsing accuracies
index. Any configuratiore with an empty stack and in the experimental sections suggest that the BiL-
a buffer containing onhROQT is terminal, and the STM encoding is capable of estimating a lot of the
parse tree is given by the arc §etof c. Arc-hybrid missing information based on the provided stack and
system allows 3 possible transitionsi18T, LEFT, buffer elements and the sequential content between
and RGHT,, defined as: them.

(olbo, B, T) Extended Feature Function One of the benefits
(0, bolB, TU{(bo,s0,¢)}) of the greedy transition-based parsing framework is
(@ls1, B, TU{(s1:5.0}) precisely its ability to look at arbitrary features from

The SHIET transition moves the first item of the the already built tree. If we allow somewhat less
buffer (by) to the stack. The EFT, transition re- minimal feature function, we could add the BiIL-
moves the first item on top of the stack,) and STM vectors corresponding to the right-most and
attaches it as a modifier tg with label ¢, adding 'eft-most modifiers ofsg, s; ands,, as well as the
the arc(bg, so, £). The RGHT, transition removes left-most modifier ofby, reaching a total of 11 BiL-
s from the stack and attaches it as a modifier to the ' M vectors. We refer to this as thestended fea-

next item on the stacks(), adding the ar€s, s, ¢). ture set. As We’ll_see in _Section 6, u§ing the ex-
tended set does indeed improve parsing accuracies

Scoring Function Traditionally, the scoring func- when using pre-trained word embeddings, but has a
tion SCOREy(x,t) is a discriminative linear model minimal effect in the fully-supervised case.

of the form oOREy (z,t) = (W - x)[t]. The lin-

earity of SCORE required the feature function(-) 41 Detailsof theTraining Algorithm

to encode non-linearities in the form of combinatiorThe training objective is to set the score of correct

features. We follow Chen and Manning (2014) andransitions above the scores of incorrect transitions.

SHIFT[(o, bo|B, T)]
LEFT,[(o]s1|s0, bolB, T)]
R|GHT[[(U|51|507 B7 T)]

replace the linear scoring model with an MLP. We use a margin-based objective, aiming to maxi-
mize the margin between the highest scoring correct
SCOREy(z,t) = M LPy()]t] action and the highest scoring incorrect action. The

_ _ _ hinge loss at each parsing configuratierns defined
Simple Feature Function The feature function .

¢(c) typically complex (see Section 2.1). Our
feature function is the concatenated BiLSTM vec-
tors of the top 3 items on the stack and the first
item on the buffer. l.e., for a configuration =)

’ MLP t
(...]s2|s1]s0, bo|..., T) the feature extractor +th£3<{0 (6()) tr)
is defined as:

max (0, 1— max MLP(¢(c))[to]

where A is the set of possible transitions aid

is the set of correct (gold) transitions at the cur-
rent stage. At each stage of the training process
the parser scores the possible transitighsincurs

a loss, selects a transition to follow, and moves to
the next configuration based on it. The local losses
are summed throughout the parsing process of a sen-
gnce, and the parameters are updated with respect
to the sum of the losses at sentence boundaries.

(;3(0) = Ugy O Vsy O Usgy O Upy

v; = BILSTM(21.p,, 1)

This feature function is rather minimal: it takes
into account the BILSTM representations 4f, so
andbg, which are the items affected by the possibl
transitions being scored, as well as one extra sta
contextss.* Note that, unlike previous work, this

feature functiondoes not take into accounf”, the *To increase gradient stability and training speed, we simu-
late mini-batch updates by only updating the parametersiwhe
4An additional buffer context is not needed, tass by def- the sum of local losses contains at least 50 non-zero element
inition adjecent tohg, a fact that we expect the BiLSTM en- Sums of fewer elements are carried across sentences. Fhis as
coding ofb, to capture. In contrasty, so, s1 andsz are not sures us a sufficient number of gradient samples for every up-
necessarily adjacent to each other. date thus minimizing the effect of gradient instability.

The gradients of the entire network (including thedunction). We depart from the literature by replac-
MLP and the BIiLSTM) with respect to the sum ofing the hand-crafted feature function over carefully
the losses are calculated using the backpropagatiselected components of the configuration with a con-
algorithm. As usual, we perform several training it-catenation of BiLSTM representations of few promi-
erations over the training corpus, shuffling the ordement items on the stack and the buffer, and training
of sentences in each iteration. the BILSTM encoder jointly with the rest of the net-

: , . work.
Error-Exploration and Dynamic Oracle Training

We follow Goldberg and Nivre (2013; 2012) in us-5 Graph-based Par ser
ing error exploration training with a dynamic-oracle,

which we briefly describe below. Graph-based parsing follows the common structured

At each stage in the training process, the pars@rred'cnon paradigm (Taskar et al., 2005; McDonald

assigns scores to all the possible transitioasA. It etal., 2005):

then selects a_transitior_m,_ applies it, and moves to the predict(s) = arg max score gopal (5,)
next step. Which transition should be followed? A yeY(s)

common approach follows the highest scoring tran-
sition that can lead to the gold tree. However, when
training in this way the parser sees only configura-
tions that result from following correct actions, andGiven an input sentence (and the corresponding
as a result tends to suffer from error propagation aequence of vectors;.,) we look for the highest-
test time. Instead, in error-exploration training thescoring parse treg in the space)/(s) of valid de-
parser follows the highest scoring actiondndur- pendency trees ovet. In order to make the search
ing training even if this action is incorrect, exposingtractable, the scoring function is decomposed to the
it to configurations that result from erroneous decisum of local scores for each part independently.
sions. This strategy requires defining the Getuch In this work, we focus on arc-factored graph
that the correct actions to take are well-defined aldoased approach presented in (McDonald et al.,
for states that cannot lead to the gold tree. Suc2005). Arc-factored parsing decomposes the score
a setG is called adynamic oracle. We perform of tree to the sum of the score of its head-modifier
error-exploration training using the dynamic-oraclearcs(h, m):

defined in (Goldberg and Nivre, 2013).

Scoreglobal('S»y) = Z scoreloeal(s,part)
partey

parse(s) = arg max Z score(¢(s,h,m))
Aggressive Exploration We found that even when vEV(S) (hmyey

using error-exploration, after one iteration the model

remembers the training set quite well, and does néiiven the scores of the arcs the highest scoring pro-
make enough errors to make error-exploration effedective tree can be efficiently found using Eisner’s
tive. In order to expose the parser to more errorglecoding algorithm (1996). McDonald et al and
we follow an aggressive-exploration scheme: w@ost subsequent work estimate the local score of an
sometimes follow incorrect transitions also if theyarc by a linear model parameterized by a weight vec-
score below correct transitions. Specifically, whetor w, and a feature functiow(s, h,m) assigning
the score of the correct transition is greater than thaparse feature vector for an arc linking modifier

of the wrong transition but the difference is smalleito head:. We follow Pei et al (2015) and replace the
than a margin constant, we chose to follow the incofinear scoring function with an MLP.

rect action with probability,,, (We usep,g4, = 0.1 The feature extractop(s, h, m) is usually com-
in our experiments). plex, involving many elements (see section 2.1). In

contrast, our feature extractor uses merely the BiL-

Summary The greedy transition based parseSTM encoding of the head word and the modifier
follows standard techniques from the literaturgygrq:

(margin-based objective, dynamic oracle training,
error exploration, MLP-based non-linear scoring ¢(s, h,m) = BIRNN(z1.,, h) o BIRNN(21.;,, m)

The final model is: As before we use a margin based hinge loss. The la-
beler is trained on the gold treBsThe BILSTM en-
parse(s) = arg max scoregiopal (s, y) coder responsible for producing andv,, is shared

yed(s) with the arc-factored parser: the same BiLSTM en-
= argmax Z score(d(s,h,m)) coder is used in the parer and the labeler. This

YEV(S) (h,m)ey sharing of parameters can be seen as an instance of
= arg max MLP(vy, 0 vy,) multi-task learning (Caruana, 1997). As we show in

veV(s) (hmyey Section 6, the sharing is effective: training the BiL-

STM feature encoder to be good at predicting arc-
labels significantly improves the parser’s unlabeled

Training The training objective is to set the Scoreaccuracy.
function such that correct tregis scored above in- L ossaugmented inference In initial experiments,

correct ones. We use a margin-based objective (Mgse neqwork learned quickly and overfit the data. In
Donald et al., 2005; LeCun et al., 2006), aiming Qo 1o remedy this, we found it useful to Usss
maximize the margin between the score of the 9°|gugmented inference (Taskar et al., 2005). The in-
treey and highest scoring incorrect trgé We de- y,ition behind loss augmented inference is to update
fine & hinge loss with respect to a gold ueas: against trees which have high model scores and are
also very wrong. This is done by augmenting the

v; = BIRNN(z1.p,, 1)

mae (07 1 — max MLP(vy, 0vp) score of each part not_belonging to the gold tree by
Y £y (hmey’ adding a constant to its score. Formally, the loss
transforms as follows:
+ > MLP(v 0 vm))
(h,m)ey max(0,1 + score(z,y)—
Each of the tree scores is the calculated by activating Iyn?%}y((scoreiocat(x, part) + Ipartgy))
the MLP on the arc representations. The entire loss partey’

can viewed as the sum of multiple neural networksgneed improvements The arc-factored model re-
which is sub-differentiable. We calculate the gradiyires the scoring ofi2 arcs. Scoring is performed
ents of the entire thing (including to the BILSTM ysjng an MLP with one hidden layer, resultingrif

encoder and word embeddings). matrix-vector multiplications from the input to the

Labeled Parsing Up to now, we described unla- hidden layer, anch? multiplications from the hid-
beled parsing. A possible approach of adding |gden to the output layer. The firs® multiplications
bels is to score the combination of an unlabeled afgvolve larger dimensional input and output vectors,
(h,m) and its label by considering the label as parta”d are the most time con_su_min_g. Fortunately, these
of the arc(h, m, £). This results ifLabels| x |Arcs| &N be.r.educed tan mu_Itlpllcatlons andn_2 vec-
parts that need to be scored, leading to slow parsigF 2dditions, by observing that the multiplication
speeds and arguably a harder learning problem. + (vn © vm) €anN be written sl - v, + W2 - v,
Instead, we chose to first predict the unlabelehereW' andW! are are the first and second half
structure using the model given above, and then pr8f the matrixi¥ and reusing the products across dif-

dict the label of each resulting arc. Using this apf€rent pairs.

proach, the number of parts stays small, enablinﬁummar y The graph-based parser is straight-
fast parsing. orward first-order parser, trained with a margin-

The labeling of an ar¢h, m) is performed using based hinge-loss and loss-augmented inference. We

the same feature representatitfs, , m) fed into a depart from the literature by replacing the hand-
different MLP predictor: crafted feature function with a concatenation of

SWhen training the labeled parser, we calculate the strectur
label(h,m) = argmax M LPr g1 (vy o vy,)[¢] loss and the labeling loss for each training sentence, amd su
L€labels the losses prior to computing the gradients.

BILSTM representations of the head and modifier During training, we employ a variant ofiord
words, and training the BIiLSTM encoder jointly dropout (lyyer et al., 2015), and replace a word with
with the structured objective. We also introduce #&he unknown-word symbol with probability that is
novel MTL-based approach for labeled parsing bynversely proportional to frequency of the word. A
training a second-stage arc-labeler sharing the samerd w appearing#(w) times in the training corpus
BiLSTM encoder with the unlabeled parser. is replaced with the unknown symbol with a proba-
_ bility pynk(w) = #%)M. If a word was dropped
6 Experimentsand Results the external embec}dmg of the word is also dropped

We evaluated our parsing model on English and ChYyith probability of half.

nese data. For comparison purposes we follow th%we tr‘;']n tEe $ars:ajrs| for up dFO 3,? ':ﬁraETSS , and
setup of (Dyer et al., 2015). choose the best model according to the accu-

racy on the development set.

Data For English, we used the Stanford DepenHyperparameter Tuning We performed a very

dency (SD) (de Marneffe and Manning, 2008) con- inimal hyper-parameter search with the graph-

version of the Penn Treebank (Marcus et al., 1993 ased parser. and use the same hvper-narameters for
using the standard train/dev/test splitswith the same P ' yperp

oredicted POS-tags as used in (Dyer et al., 201 oth parsers. The hyper-parameters of the final net-

Chen and Manning, 2014). This dataset containsvgt(.)rks.USEd for all the reported experiments are de-
o . tailed in Table 1.
few non-projective trees. Punctuation symbols are

excluded from the evaluation. Word embedding dimension 100

For Chinese, we use the Penn Chinese Treebank POSH Fgg embe.;jd.'rrl‘zgji'?ens'on 12:0

. . . laden units 1\,

5.1 (CTB5), using the train/test/dev sp_llts of (Zhang Hidden units IV LP, 51 100
and Clark, 2008; Dyer et al., 2015) with gold part- BI-LSTM Layers 2
of-speech tags, also following (Dyer et al., 2015; BI-LSTM Dimensions (hidden/output) 125 / 125
Chen and Manning, 2014). a (for word dropout) 0.25

When using external word embeddings, we also Paug (fOr exploration training) 0.1
use the same data as (Dyer et al., 2015). Table 1: Hyper-parameter values used in experiments

Implementation Details The parsers are imple-
mented in python, using the PyCNN toofkifor ~Main Results Table 2 lists the test-set accuracies of
neural network training. The code will be madeour best parsing models, compared to other state-of-
available on the first author's website. We use ththe art parsers from the literatute.
LSTM variant implemented in PyCNN, and opti- It is clear that our parsers are very competitive,
mize using the Adam optimizer (Kingma and Badespite using very simple parsing architectures and
2014). Unless otherwise noted, we use the defaurinimal feature extractors. When not using external
values provided by PyCNN (e.g. for random initial-embeddings, the first-order graph-based parser with
ization, learning rates etc). 2 features outperforms all other systems that are not
The word and POS embeddingéw;) ande(p;) Using external resources, including the third-order
are initialized to random values and trained togethefurboParser. The greedy transition based parser
with the rest of parsers’ networks. In some exper\Nith 4 features also matches or outperforms most
iments, we introduce also pre-trained word embedpther parsers, including the beam-based transition
dings. In those cases, the vector representation ofarser with heavily engineered features of Zhang
word is a concatenation of its randomly-initializedand Nivre (2011) and the Stack-LSTM parser of
vector embedding with its pre-trained word vector.

) L Unfortunately, many papers still report English parsing
Both are tuned during training. We use the sam@suilts on the deficient Yamada and Matsumoto head rules

word vectors as in Dyer et al (2015), (PTB-YM) rather than the more modern Stanford-dependencie
- (PTB-SD). We note that the PTB-YM and PTB-SD results are
"We thank Dyer et al for sharing their data with us. not strictly comparable, and in our experience the PTB-YM re

8ht t p: / / www. gi t hub. cond cl ab/ cnn/ pycnn sults are usually about half a UAS point higher.

System Method Representation Emb | PTB-YM PTB-SD CTB
UAS UAS LAS | UAS LAS
This work graph, 1st order 2 BiLSTM vectors - - 932 910 | 864 848
This work transition (greedy) 4 BiLSTM vectors - - 92.8 90.7| 86.0 84.3
This work transition (greedy) 11 BiLSTM vectors - - 92.9 90.7| 85.6 83.9
ZhangNivrell transition (beam)| large feature set (sparse) — 92.9 - - | 86.0 844
Martins13 (TurboParser) graph, 3rd order+| large feature set (sparse) — 92.8 93.1 - - -
Peil5 graph, 2nd order| large feature set (dense)| — 93.0 - - - -
Dyerl5 transition (greedy) Stack-LSTM + composition — - 92.4 90.0| 85.7 84.1
This work graph, 1st order 2 BiLSTM vectors YES - 92.7 90.5| 86.1 84.5
This work transition (greedy) 4 BiLSTM vectors YES - 93.3 91.1| 86.6 85.0
This work transition (greedy) 11 BiLSTM vectors YES - 93.6 91.5| 87.3 857
Weiss15 transition (greedy) large feature set (dense)| YES - 93.2 91.2| - -
Weiss15 transition (beam)| large feature set (dense)| YES - 940 920 - -
Peil5 graph, 2nd order| large feature set (dense)| YES 93.3 - - - -
Dyer15 transition (greedy) Stack-LSTM + composition YES - 93.1 90.9| 87.1 855
LeZuidemal4d reranking /blend | inside-outside recursive net YES 93.1 93.8 91.5| - -
Zhul5 reranking /blend recursive conv-net YES 93.8 - - | 85.7 -

Table 2:Test-set parsing results of various state-of-the-artipgus/stems on the English (PTB) and Chinese (CTB) dataghts.
systems that use embeddings may use different pre-trambdddings. English results use predicted POS tags (diffsystems
use different taggers), while Chinese results use gold R@QS PTB-YM: English PTB, Yamada and Matsumoto head rules.
PTB-SD: English PTB, Stanford Dependencies (different systemg nsa different versions of the Stanford convertef)T B:
Chinese Treebankeranking /blend in method column indicates a reranking system where thekerascore is interpolated with
the base-parser’s score. The different systems and theeraméported from them are taken from: ZhangNivrell: (Zheam)
Nivre, 2011); Martins13: (Martins et al., 2013); Weiss15¢(®¢ et al., 2015); Peil5: (Pei et al., 2015); Dyer15 (Dyel.e2015);
LeZuidemal4 (Le and Zuidema, 2014); Zhul5: (Zhu et al., 2015

Dyer et al (2015). Moving from the simple (4 fea- UAgT?_AS UASCT?_AS
tures) to the extended (11 features) f(_aature set leads Graph (no ext, emb] 932 90.8] 86.7 850
to very small improvements for English and small _ArcLabeler 923 - |85 -
accuracy losses in Chinese. —Loss Aug. 81.8 79.8| 56.3 55.3
Interestingly, when adding external word embed- Géee%y (e>|‘t- emb) 32-525 gi-é 2;-5 22-;
dings the accuracy of the graph-based padser —Jynbracke : : : :

gr:ades' I\Ne ?’re ncf)t Sﬁure .Why thls. happer_ls, Snd le;.iv'?able 3: Ablation experiments results (dev set) for the graph-
t _e exploration of eifective semi-supervise parsiNgaseq parser without external embeddings and the greesigrpar
with the graph-based model for future work. Theyith external embeddings and extended feature set.

greedy parser does manage to benefit from the ex-

ter_nal embeddir_mgs, and with L_Jsing them we also S{8beler contributes nicely to thenlabeled scores.
gains from moving from the simple o the extenOIecgynamic—oracle training has mixed results on the
feature set. Both feature sets result in very com-

petitive results, with the extended feature set yielag-ree<jy parser, yielding small gains for English and

ing the best reported results for Chinese, and thsemall drops for Chinese.

is ranked third for English, after the heavily-tuned; Conclusion
beam-based parser of Weiss et al (2015) and the

much more elaborate reranker-based neural pard&f presented a frustratingly effective approach for
of Le and Zuidema (2014). feature extraction for dependency parsing based on

a BILSTM encoder that is trained jointly with the
Additional Results We perform some ablation ex- parer, and demonstrated its effectiveness by integrat-
periments in order to quantify the effect of the dif-ing it into two simple parsing models: a greedy tran-
ferent components on our best models (Table 3). sition based parser and a globally optimized first-
Loss augmented inference is crucial for the sumrder graph-based parser, yielding very competitive
cess of the graph-based parser, and the MTL arparsing accuracies in both cases.

Acknowledgements This research is supported byLiang Huang and Kenji Sagae. 2010. Dynamic program-
the Intel Collaborative Research Institute for Com- ming for linear-time incremental parsing. Rroc. of
putational Intelligence (ICRI-CI) and the Israeli Sci- ACL, July.

ence Foundation (grant number 1555/15). Oza_n Irsoy and Claire Cardie. 2014. Opinion Mining
with Deep Recurrent Neural Networks. Rroceed-

ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 720—
728, Doha, Qatar, October. Association for Computa-
tional Linguistics.
Mohit lyyer, Varun Manjunatha, Jordan Boyd-Graber,
d and Hal Daumé Ill. 2015. Deep Unordered Com-
position Rivals Syntactic Methods for Text Classifica-
tion. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1681—
1691, Beijing, China, July. Association for Computa-
tional Linguistics.

References

Rich Caruana. 1997. Multitask learniniylach. Learn.,
28(1):41-75, July.

Dangi Chen and Christopher Manning. 2014. A Fast an
Accurate Dependency Parser using Neural Networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740-750, Doha, Qatar, October. Association for
Computational Linguistics.

Kyunghyun Cho. 2015. Natural language under-

Zfsr;(]j.g]fl \év;tglglstrlbuted representation. CoRR, Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
. -)) Visualizing and Understanding Recurrent Networks.

Marie-Catherine de Marneffe and Christopher D. Man- 4,y 1506.02078[cg, June.

ning. 2008. Stanford dependencies manual. Techngiederik Kingma and Jimmy Ba. 2014. Adam: A

cal report, Stanford University. Method for Stochastic Optimizatiorar Xiv: 1412.6980
Chris Dyer, Miguel Ballesteros, Wang Ling, Austin [cs], December.

Matthews, and Noah A. Smith. 2015. Transition-Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-

Based Dependency Parsing with Stack Long Short- first dependency parsing with hierarchical tree Istms.

Term Memory. InProceedings of the 53rd Annual arXiv preprint arXiv: 1603.00375, March.

Meeting of the Association for Computational Linguis- Terry Koo and Michael Collins. 2010. Efficient third-

ticsand the 7th International Joint Conference on Nat-
ural Language Processing (Molume 1: Long Papers),

order dependency parsers.Rroc. of ACL.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.

pages 334-343, Beijing, China, July. Association for sjmple semi-supervised dependency parsindgrbe.

Computational Linguistics.

of ACL.

Jason Eisner. 1996. Three new probabilistic models f@andra Kibler, Ryan McDonald, and Joakim Nivre.

dependency parsing: An exploration.Rroc. of COL-
ING.

Jeffrey L. ElIman. 1990. Finding Structure in Tinf@og-
nitive Science, 14(2):179-211, March.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for the arc-eager system. Rnoc. of COLING
2012.

Yoav Goldberg and Joakim Nivre. 2013. Training

deterministic parsers with non-deterministic oraclesP

Transactions of the association for Computational
Linguistics, 1.

Yoav Goldberg. 2015. A primer on neural net-
work models for natural language processi@pRR,
abs/1510.00726.

A. Graves. 2008. Supervised sequence labelling with

recurrent neural networks. Ph.D. thesis, Technische
Universitat Minchen.

hong Le and Willem Zuidema.

2008. Dependency Parsingynthesis L ectures on Hu-
man Language Technologies, 2(1):1-127, December.

Marco Kuhimann, Carlos Gomez-Rodriguez, and Gior-

gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsersPrioceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673-682, Portland, Oregon, USA,
June. Association for Computational Linguistics.
2014. The Inside-
Outside Recursive Neural Network model for Depen-
dency Parsing. IRroceedings of the 2014 Conference

on Empirical Methods in Natural Language Process-

ing (EMNLP), pages 729-739, Doha, Qatar, October.
Association for Computational Linguistics.

Yann LeCun, Sumit Chopra, Raia Hadsell, M. Ranzato,

and F. Huang. 2006. A tutorial on energy-based learn-
ing. Predicting structured data, 1:0.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Lontpo Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and

short-term memoryNeural computation, 9(8):1735—
1780.

Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. FProceedings of the

52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1. Long Papers), pages
1381-1391, Baltimore, Maryland, June. Association
for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marchinkiewicz. 1993. Building a large annotated
corpus of English: The penn TreebanlComputa-
tional Linguistics, 19.

Andre Martins, Noah Smith, and Eric Xing. 2009. Con-Yue Zhang and Stephen Clark.

cise integer linear programming formulations for de-
pendency parsing. IRroc. ACL/AFNLP.
Andre Martins, Miguel Almeida, and Noah A. Smith.

David Weiss, Chris Alberti, Michael Collins, and Slav

Petrov. 2015. Structured Training for Neural Network
Transition-Based Parsing. Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference

on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323—-333, Beijing, China, July. Associa-
tion for Computational Linguistics.

2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. IrProc. of EMNLP.

2013. Turning on the turbo: Fast third-order nonYue Zhang and Joakim Nivre. 2011. Transition-based

projective turbo parsers. IRroceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 617-622,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188-193.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing

Ryan McDonald, Koby Crammer, and Fernando Pereira. Huang. 2015. A Re-ranking Model for Dependency

2005. Online large-margin training of dependency
parsers. IrProc. of ACL.

Ryan McDonald. 2006.Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. lmcremental Parsing: Bringing
Engineering and Cognition Together, ACL-Wbrkshop.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-
mental Dependency Parsin@omputational Linguis-
tics, 34(4):513-553, December.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An Ef-

fective Neural Network Model for Graph-based De-
pendency Parsing. IRroceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
ticsand the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 313-322, Beijing, China, July. Association for
Computational Linguistics.

M. Schuster and Kuldip K. Paliwal. 1997. Bidirectional
recurrent neural network$EEE Transactionson Sg-
nal Processing, 45(11):2673—-2681, November.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured prediction

models: a large margin approach. Pnoceedings of
the 22nd international conference on Machine learn-
ing, ICML 05, pages 896—903, New York, NY, USA.
ACM.

Hillel Taub-Tabib, Yoav Goldberg, and Amir Glober-
son.
ing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics. Human Language Technolo-

gies, pages 1422-1427, Denver, Colorado, May—June.

Association for Computational Linguistics.

2015. Template kernels for dependency pars-

Parser with Recursive Convolutional Neural Network.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Molume 1. Long Papers), pages 1159—
1168, Beijing, China, July. Association for Computa-
tional Linguistics.

