
ar
X

iv
:1

60
3.

04
35

1v
1

 [c
s.

C
L]

 1
4

M
ar

 2
01

6

Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

elikip@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

yoav.goldberg@gmail.com

Abstract

We present a simple and effective scheme
for dependency parsing which is based on
bidirectional-LSTMs (BiLSTMs). Each sen-
tence token is associated with a BiLSTM vec-
tor representing the token in its sentential con-
text, and feature vectors are constructed by
concatenating a few BiLSTM vectors. The
BiLSTM is trained jointly with the parser ob-
jective, resulting in very effective feature ex-
tractors for parsing. We demonstrate the ef-
fectiveness of the approach by applying it to
a greedy transition based parser as well as to
a globally optimized graph-based parser. The
resulting parsers have very simple architec-
tures, and match or surpass the state-of-the-art
accuracies on English and Chinese.

1 Introduction

The focus of this paper is on feature represen-
tation for dependency parsing, using recent tech-
niques from the neural-networks (“deep learning”)
literature. Modern approaches to dependency pars-
ing can be broadly categorized into graph-based
and transition-based parsers (Kübler et al., 2008).
Graph-based parsers (McDonald, 2006) treat pars-
ing as a search-based structured prediction prob-
lem in which the goal is learning a scoring func-
tion over dependency trees such that the correct tree
is scored above all other trees. Transition-based
parsers (Nivre, 2004; Nivre, 2008) treat parsing as
a sequence of actions that produce a parse tree, and
a classifier is trained to score the possible actions at
each stage of the process and guide the parsing pro-
cess. Perhaps the simplest graph-based parsers are

arc-factored (first order) models (McDonald, 2006),
in which the scoring function for a tree decomposes
over the individual arcs of the tree. More elaborate
models look at larger (overlapping) parts, requiring
more sophisticated inference and training algorithms
(Martins et al., 2009; Koo and Collins, 2010). The
basic transition-based parsers work in a greedy man-
ner, performing a series of locally-optimal decisions,
and boast very fast parsing speeds. More advanced
transition-based parsers introduce some search into
the process using a beam (Zhang and Clark, 2008)
or dynamic programming (Huang and Sagae, 2010).

Regardless of the details of the parsing framework
being used, a crucial step in parser design is choos-
ing the rightfeature function for the underlying sta-
tistical model. Recent work (see Section 2.2 for an
overview) attempt to alleviate parts of the feature
function design problem by moving from linear to
non-linear models, enabling the modeler to focus on
a small set of “core” features and leaving it up to the
machine-learning machinery to come up with good
feature combinations (Chen and Manning, 2014; Pei
et al., 2015; Lei et al., 2014; Taub-Tabib et al.,
2015). However, the need to carefully define a set
of core features remains. For example, the work
of (Chen and Manning, 2014) uses 18 different el-
ements in its feature function, while the work of
(Pei et al., 2015) uses 21 different elements. Other
works, notably (Dyer et al., 2015; Le and Zuidema,
2014), propose more sophisticated feature represen-
tations, in which the feature engineering is replaced
with architecture engineering.

In this work, we suggest an approach which is
much simpler in terms of both feature engineering

http://arxiv.org/abs/1603.04351v1

and architecture engineering. Our proposal (Section
3) is centered around BiRNNs (Irsoy and Cardie,
2014; Schuster and Paliwal, 1997), and more specif-
ically BiLSTMs (Graves, 2008), which are strong
and trainable sequence models (see Section 2.3).
The BiLSTM excels at representing elements in
a sequence (i.e., words) together with their con-
texts, capturing the element and an “infinite” win-
dow around it. We represent each word by its BiL-
STM encoding, and use a concatenation of a min-
imal set of such BiLSTM encodings as our feature
function, which is then passed to a non-linear scor-
ing function (multi-layer perceptron). Crucially, the
BiLSTM is trained with the rest of the parser in order
to learn a good feature representation for the parsing
problem. If we set aside the inherent complexity of
the BiLSTM itself and treat it as a black box, our
proposal results in a frustratingly simple feature ex-
tractor.

We demonstrate the effectiveness of the approach
by using the BiLSTM feature extractor in two pars-
ing architectures, transition-based (Section 4) as
well as a graph-based (Section 5). In the graph-
based parser, we jointly train a structured-prediction
model on top of a BiLSTM, propagating errors from
the structured objective all the way back to the BiL-
STM feature-encoder. To the best of our knowledge,
we are the first to perform such end-to-end training
of a structured prediction model and a recurrent fea-
ture extractor.

Aside from the novelty of the BiLSTM feature
extractor and the end-to-end structured training, we
rely on existing models and techniques from the
parsing and structured prediction literature. We stick
to the simplest parsers in each category – greedy in-
ference for the transition-based architecture, and a
first-order, arc-factored model for the graph-based
architecture. Despite the simplicity of the parsing
architectures and the feature functions, we achieve
state-of-the-art parsing accuracies in both English
(93.2 UAS) and Chinese (86.4 UAS), using a first-
order parser with two features and while training
solely on Treebank data, without relying on semi-
supervised signals such as pre-trained word em-
beddings (Chen and Manning, 2014), word-clusters
(Koo et al., 2008), or techniques such as tri-training
(Weiss et al., 2015). When including also pre-
trained word embeddings, we obtain further im-

provements, with accuracies of 93.6 UAS (English)
and 87.3 UAS (Chinese) for a greedy transition-
based parser with 11 features, and 93.3 UAS (En)
/ 86.6 (Ch) for a greedy transition-based parser with
4 features.

2 Background and Notation

Notation We usex1:n to denote a sequence ofn
vectorsx1, · · · , xn. Fθ(·) is a function parameter-
ized with parametersθ. We writeFL(·) as a shortcut
to FθL – an instantiation ofF with a specific set of
parametersθL. We use◦ to denote a vector con-
catenation operation, andv[i] to denote an indexing
operation taking theith element of a vectorv.

2.1 Feature Functions in Dependency Parsing

Traditionally, state-of-the-art parsers rely on linear
models over hand-crafted feature functions. The fea-
ture functions look at core components (e.g. “word
on top of stack”, “leftmost child of the second-to-
top word on the stack”, “distance between the head
and the modifier words”), and are comprised of sev-
eral templates, where each template instantiates a bi-
nary indicator function over a conjunction of core
elements (resulting in features of the form “word on
top of stack is X and leftmost child is Y and . . . ”).
The design of the feature function – which compo-
nents to consider and which combinations of com-
ponents to include – is a major challenge in parser
design. Once a good feature function is proposed
in a paper it is usually adopted in later works, and
sometimes tweaked to improve performance. Ex-
amples of good feature functions are the feature-set
proposed by Zhang and Nivre (2011) for transition-
based parsing (including roughly 20 core compo-
nents and 72 feature templates), and the feature-set
proposed by McDonald et al (2005) for graph-based
parsing, with the paper listing 18 templates for a
first-order parser, and the MSTParser’s first-order
feature-extractor code containing roughly a hundred
feature templates.

The core features in a transition-based parser usu-
ally look at information such as the word-identity
and part-of-speech (POS) tags of a fixed number of
words on top of the stack, a fixed number of words
on the top of the buffer, the modifiers (usually left-
most and right-most) of items on the stack and on the

buffer, the number of modifiers of these elements,
parents of words on the stack, and the length of the
spans spanned by the words on the stack. The core
features of a first-order graph-based parser usually
take into account the word and POS of the head and
the modifier items, as well as the POS-tags of the
items around to the head and the modifier, the POS
tags of items between the head and the modifier, and
the distance and direction between the head and the
modifier.

2.2 Related Research Efforts

Coming up with a good feature-set for a parser is a
hard and time consuming task, and many researchers
attempt to reduce the required manual efforts. The
work of Lei et al (2014) suggest a low-rank ten-
sor representation to automatically find good fea-
ture combinations. Taub-Tabib et al (2015) suggest a
kernel-based approach to implicitly consider all pos-
sible feature combinations over sets of core-features.
The recent popularity of neural-networks prompted
a move from templates of sparse, binary indicator
features to dense core feature encodings fed into
non-linear classifiers. Chen and Manning (2014) en-
code each core feature of a greedy transition-based
parser as a dense low-dimensional vector, and the
vectors are then concatenated and fed into a non-
linear classifier (multi-layer perceptron) which can
potentially capture arbitrary feature combinations.
Weiss et al (2015) showed further gains using the
same approach coupled with a somewhat improved
set of core features, a more involved network ar-
chitecture with skip-layers, beam search-decoding,
and careful hyper-parameter tuning. Pei et al (2015)
apply a similar methodology to graph-based pars-
ing. While the move to neural-network classi-
fiers alleviates the need for hand-crafting feature-
combinations, the need to carefully define a set of
core features remain. For example, the feature rep-
resentation in (Chen and Manning, 2014) is a con-
catenation of 18 word vectors, 18 POS vectors and
12 dependency-label vectors.1

1In all of these neural-network based approaches, the vec-
tor representations of words were initialized using pre-trained
word-embeddings derived from a large corpus external to the
training data. This puts the approaches in the semi-supervised
category, making it hard to tease apart the contribution of the au-
tomatic feature-combination component from that of the semi-

The above works tackle the effort in hand-crafting
effective feature combinations. A different line of
work attacks the feature-engineering problem by
suggesting novel neural-network architectures for
encoding the parser state, including intermediately-
built subtrees, as vectors which are then fed to non-
linear classifiers. In the work of Dyer et al (2015),
the entire stack and buffer of a transition-based
parser are encoded as a stack-LSTMs, where each
stack element is itself based on a compositional rep-
resentation of parse trees. Le and Zuidema (2014)
encode each tree node as two compositional repre-
sentations capturing the inside and outside structures
around the node, and feed the representations into
a reranker. A similar reranking approach, this time
based on convolutional neural networks, is taken by
Zhu et al (2015). Finally, in Kiperwasser and Gold-
berg (2016) we present an Easy-First parser based
on a novel hierarchical-LSTM tree encoding.

In contrast to these, the approach we present in
this work results in much simpler feature functions,
without resorting to elaborate network architectures
or compositional tree representations.

2.3 Bidirectional Recurrent Neural Networks

Recurrent neural networks (RNNs) are statistical
learners for modeling sequential data. An RNN al-
lows to model theith element in the sequence based
on the past – the elementsx1:i up to and including
it. The RNN model provides a framework for condi-
tioning on the entire historyx1:i without resorting to
the Markov assumption which is traditionally used
for modeling sequences. RNNs were shown to be
capable of learning to count, as well as to model line
lengths and complex phenomena such as bracketing
and code indentation (Karpathy et al., 2015). Our
proposed feature extractors are based on a bidirec-
tional recurrent neural network (BiRNN), an exten-
sion of RNNs that take into account both the past
x1:i and the futurexi:n. We use a specific flavor
of RNN called a long short-term memory network
(LSTM). For brevity, we treat RNN as an abstrac-
tion, without getting into the mathematical details of
the implementation of the RNNs and LSTMs. For
further details on RNNs and LSTMs, the reader is
referred to (Goldberg, 2015; Cho, 2015).

supervised component.

The recurrent neural network (RNN) abstraction
is a parameterized function RNNθ(x1:n) mapping a
sequence ofn input vectorsx1:n, xi ∈ R

din to a se-
quence ofn output vectorsh1:n, hi ∈ R

dout. Each
output vectorhi is conditioned on all the input vec-
torsx1:i, and can be thought of as asummary of the
prefix x1:i of x1:n. In our notation, we ignore the
intermediate vectorsh1:n−1 and take the output of
RNNθ(x1:n) to be the vectorhn.

A bidirectional RNN is composed of two RNNs,
RNNF and RNNR, one reading the sequence in its
regular order, and the other reading it in reverse.
Concretely, given a sequence of vectorsx1:n and a
desired indexi, the function BIRNNθ(x1:n, i) is de-
fined as:

BIRNNθ(x1:n, i) = RNNF (x1:i) ◦ RNNR(xn:i)

The vectorvi = BIRNN(x1:n, i) is then a represen-
tation of theith item in x1:n, taking into account
both the entire historyx1:i and the entire futurexi:n.
We can view the BiRNN encoding of an itemi as
representing the itemi together with a context of an
infinite window around it.

Computational Complexity Computing the
BiRNN vectors encoding of theith element of a
sequencex1:n requiresO(n) time for computing
the two RNNs and concatenating their outputs.
A naive approach of computing the bidirectional
representation of alln elements result inO(n2)
computation. However, it is trivial to compute
the BiRNN encoding of all sequence items in
linear time by pre-computing RNNF (x1:n) and
RNNR(xn:1), keeping the intermediate representa-
tions, and concatenating the required elements as
needed.

BiRNN Training Initially, the BiRNN encodings
vi do not capture any particular information. During
training, the encoded vectorsvi are fed into further
network layers, until at some point a prediction is
made, and a loss is incurred. The back-propagation
algorithm is used to compute the gradients of all the
parameters in the network (including the BiRNN pa-
rameters) with respect to the loss, and an optimizer
is used to update the parameters according to the
gradients. The training procedure causes the BiRNN
function to extract from the input sequencex1:n the
relevant information for the task task at hand.

Going deeper A deep RNN (or k-layer RNN) is
composed ofk RNN functions RNN1, · · · ,RNNk

that feed into each other: the outputhℓ1:n of RNNℓ

becomes the input of RNNℓ+1. Stacking RNNs in
this way was empirically shown to be effective. Fi-
nally, in adeep bidirectional RNN, both RNNF and
RNNR are k-layer RNNs, and BIRNNℓ(x1:n, i) =
vℓi = hℓF,i ◦ h

ℓ
R,i. In this work, we use BiRNNs and

deep-BiRNNs interchangeably, specifying the num-
ber of layers when needed.

Historical Notes RNNs were introduced by
Elamn (Elman, 1990), and extended to BiRNNs
by (Schuster and Paliwal, 1997). The LSTM vari-
ant of RNNs is due to (Hochreiter and Schmidhu-
ber, 1997). BiLSTMs were recently popularized by
Graves (2008), and deep BiRNNs were introduced
to NLP by Irsoy and Cardie (2014), who used them
for sequence tagging.

3 Our Approach

We propose to replace the hand-crafted feature func-
tions in favor of minimally-defined feature functions
which make use of automatically learned Bidirec-
tional LSTM representations.

Given ann words input sentences with words
w1, . . . , wn together with the corresponding POS
tagst1, . . . , tn,2 we associate each wordwi and POS
ti with embedding vectorse(wi) ande(ti), and cre-
ate a sequence of input vectorsx1:n in which each
xi is a concatenation of the corresponding word and
POS vectors:

xi = e(wi) ◦ e(pi)

The embeddings are trained together with the model.
This encodes each word in isolation, disregarding its
context. We introduce context by representing each
input element as its (deep) BiLSTM vector,vi:

vi = BILSTM(x1:n, i)

Our feature functionφ is then a concatenation of a
small number of BiLSTM vectors. The exact fea-
ture function is parser dependent and will be dis-
cussed when discussing the corresponding parsers.

2In this work the tag sequence is assumed to be given, and
in practice is predicted by an external model. Future work will
address relaxing this assumption.

The resulting feature vectors are then scored using a
non-linear function, namely a multi-layer perceptron
with one hidden layer (MLP):

MLPθ(x) = W 2 · tanh(W 1 · x+ b1) + b2

whereθ = {W 1,W 2, b1, b2} are the model parame-
ters.

Beside using the BiLSTM-based feature func-
tions, we make use of standard parsing techniques.
Crucially, the BiLSTM is trained jointly with the rest
of the parsing objective. This allows it to learn rep-
resentations which are suitable for the parsing task.

Consider a concatenation of two BiLSTM vectors
(vi ◦ vj) scored using an MLP. The scoring function
has access to the words and POS-tags ofvi andvj, as
well as the words and POS-tags of the words in an
infinite window surrounding them. As LSTMs are
known to capture length and sequence position in-
formation, it is very plausible that the scoring func-
tion can be sensitive also to the distance betweeni

andj, their ordering, and the sequential material be-
tween them.

Parsing-time Complexity Once the BiLSTM is
trained, parsing is performed by first computing the
BiLSTM encodingvi for each word in the sentence
(a linear time operation).3 Then, parsing proceeds as
usual, where the feature extraction involves a con-
catenation of a small number of the pre-computedvi
vectors.

4 Transition-based Parser

We begin by integrating the feature extractor in a
transition-based parser (Nivre, 2008). We follow
the notation in (Goldberg and Nivre, 2013). The
transition-based parsing framework assumes a tran-
sition system, an abstract machine that processes
sentences and produces parse trees. The transition
system has a set of configurations and a set of tran-
sitions which are applied to configurations. When
parsing a sentence, the system is initialized to an ini-
tial configuration based on the input sentence, and
transitions are repeatedly applied to this configura-
tion. After a finite number of transitions, the system

3While the BiLSTM computation is quite efficient as it is,
if using a GPU the BiLSTM encoding can be performed over
many of sentences in parallel, making its computation cost al-
most negligible.

arrives at a terminal configuration, and a parse tree
is read off the terminal configuration. In a greedy
parser, a classifier is used to choose the transition
to take in each configuration, based on features ex-
tracted from the configuration itself. The parsing al-
gorithm is presented in algorithm 1 below:

Algorithm 1 Greedy transition-based parsing
1: Input: sentences = w1, . . . , xw, t1, . . . , tn,

parameterized function SCOREθ(·) with param-
etersθ.

2: c← INITIAL (s)
3: while not TERMINAL (c) do
4: t̂← argmaxt∈LEGAL(c) SCOREθ

(

φ(c), t
)

5: c← t̂(c)

6: return tree(c)

Given a sentences, the parser is initialized with
the configurationc (line 2). Then, a feature func-
tion φ(c) represents the configurationc as a vector,
which is fed to a scoring function SCORE assign-
ing scores to (configuration,transition) pairs. SCORE

scores the possible transitionst, and the highest
scoring transition̂t is chosen (line 4). The transition
t̂ is applied to the configuration, resulting in a new
parser configuration. The process ends when reach-
ing a final configuration, from which the resulting
parse tree is read and returned (line 6).

Transition systems differ by the way they define
configurations, and by the particular set of transi-
tions available to them. A parser is determined by
the choice of a transition system, a feature function
φ and a scoring function SCORE. Our choices are
detailed below.

The Arc-Hybrid System Many transitions sys-
tems exist in the literature. In this work, we use
the arc-hybrid transition system (Kuhlmann et al.,
2011), which is similar to the more popular arc-
standard system (Nivre, 2004), but for which an ef-
ficient dynamic oracle is available (Goldberg and
Nivre, 2012; Goldberg and Nivre, 2013). In the arc-
hybrid system, a configurationc = (σ, β, T) con-
sists of a stackσ, a buffer β, and a setT of de-
pendency arcs. Both the stack and the buffer hold
integer indices to sentence elements. Given a sen-
tences = w1, . . . , wn, t1, . . . , tn, the system is ini-
tialized with an empty stack, an empty arc set, and

β = 1, . . . , n, ROOT , whereROOT is the special root
index. Any configurationc with an empty stack and
a buffer containing onlyROOT is terminal, and the
parse tree is given by the arc setTc of c. Arc-hybrid
system allows 3 possible transitions, SHIFT, LEFTℓ
and RIGHTℓ, defined as:

SHIFT[(σ, b0|β, T)] = (σ|b0, β, T)
LEFTℓ[(σ|s1|s0, b0|β, T)] = (σ, b0|β, T ∪ {(b0, s0, ℓ)})
RIGHTℓ[(σ|s1|s0, β, T)] = (σ|s1, β, T ∪ {(s1, s0, ℓ)})

The SHIFT transition moves the first item of the
buffer (b0) to the stack. The LEFTℓ transition re-
moves the first item on top of the stack (s0) and
attaches it as a modifier tob0 with label ℓ, adding
the arc(b0, s0, ℓ). The RIGHTℓ transition removes
s0 from the stack and attaches it as a modifier to the
next item on the stack (s1), adding the arc(s1, s0, ℓ).

Scoring Function Traditionally, the scoring func-
tion SCOREθ(x, t) is a discriminative linear model
of the form SCOREW (x, t) = (W · x)[t]. The lin-
earity of SCORE required the feature functionφ(·)
to encode non-linearities in the form of combination
features. We follow Chen and Manning (2014) and
replace the linear scoring model with an MLP.

SCOREθ(x, t) = MLPθ(x)[t]

Simple Feature Function The feature function
φ(c) typically complex (see Section 2.1). Our
feature function is the concatenated BiLSTM vec-
tors of the top 3 items on the stack and the first
item on the buffer. I.e., for a configurationc =
(. . . |s2|s1|s0, b0| . . . , T) the feature extractor
is defined as:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0

vi = BILSTM(x1:n, i)

This feature function is rather minimal: it takes
into account the BiLSTM representations ofs1, s0
andb0, which are the items affected by the possible
transitions being scored, as well as one extra stack
contexts2.4 Note that, unlike previous work, this
feature functiondoes not take into accountT , the

4An additional buffer context is not needed, asb1 is by def-
inition adjecent tob0, a fact that we expect the BiLSTM en-
coding ofb0 to capture. In contrast,b0, s0, s1 ands2 are not
necessarily adjacent to each other.

already built structure. The high parsing accuracies
in the experimental sections suggest that the BiL-
STM encoding is capable of estimating a lot of the
missing information based on the provided stack and
buffer elements and the sequential content between
them.

Extended Feature Function One of the benefits
of the greedy transition-based parsing framework is
precisely its ability to look at arbitrary features from
the already built tree. If we allow somewhat less
minimal feature function, we could add the BiL-
STM vectors corresponding to the right-most and
left-most modifiers ofs0, s1 ands2, as well as the
left-most modifier ofb0, reaching a total of 11 BiL-
STM vectors. We refer to this as theextended fea-
ture set. As we’ll see in Section 6, using the ex-
tended set does indeed improve parsing accuracies
when using pre-trained word embeddings, but has a
minimal effect in the fully-supervised case.

4.1 Details of the Training Algorithm

The training objective is to set the score of correct
transitions above the scores of incorrect transitions.
We use a margin-based objective, aiming to maxi-
mize the margin between the highest scoring correct
action and the highest scoring incorrect action. The
hinge loss at each parsing configurationc is defined
as:

max
(

0, 1−max
to∈G

MLP
(

φ(c)
)

[to]

+ max
tp∈A\G

MLP
(

φ(c)
)

[tp]
)

whereA is the set of possible transitions andG
is the set of correct (gold) transitions at the cur-
rent stage. At each stage of the training process
the parser scores the possible transitionsA, incurs
a loss, selects a transition to follow, and moves to
the next configuration based on it. The local losses
are summed throughout the parsing process of a sen-
tence, and the parameters are updated with respect
to the sum of the losses at sentence boundaries.5

5To increase gradient stability and training speed, we simu-
late mini-batch updates by only updating the parameters when
the sum of local losses contains at least 50 non-zero elements.
Sums of fewer elements are carried across sentences. This as-
sures us a sufficient number of gradient samples for every up-
date thus minimizing the effect of gradient instability.

The gradients of the entire network (including the
MLP and the BiLSTM) with respect to the sum of
the losses are calculated using the backpropagation
algorithm. As usual, we perform several training it-
erations over the training corpus, shuffling the order
of sentences in each iteration.

Error-Exploration and Dynamic Oracle Training
We follow Goldberg and Nivre (2013; 2012) in us-
ing error exploration training with a dynamic-oracle,
which we briefly describe below.

At each stage in the training process, the parser
assigns scores to all the possible transitionst ∈ A. It
then selects a transition, applies it, and moves to the
next step. Which transition should be followed? A
common approach follows the highest scoring tran-
sition that can lead to the gold tree. However, when
training in this way the parser sees only configura-
tions that result from following correct actions, and
as a result tends to suffer from error propagation at
test time. Instead, in error-exploration training the
parser follows the highest scoring action inA dur-
ing training even if this action is incorrect, exposing
it to configurations that result from erroneous deci-
sions. This strategy requires defining the setG such
that the correct actions to take are well-defined also
for states that cannot lead to the gold tree. Such
a setG is called adynamic oracle. We perform
error-exploration training using the dynamic-oracle
defined in (Goldberg and Nivre, 2013).

Aggressive Exploration We found that even when
using error-exploration, after one iteration the model
remembers the training set quite well, and does not
make enough errors to make error-exploration effec-
tive. In order to expose the parser to more errors,
we follow an aggressive-exploration scheme: we
sometimes follow incorrect transitions also if they
score below correct transitions. Specifically, when
the score of the correct transition is greater than that
of the wrong transition but the difference is smaller
than a margin constant, we chose to follow the incor-
rect action with probabilitypagg (we usepagg = 0.1
in our experiments).

Summary The greedy transition based parser
follows standard techniques from the literature
(margin-based objective, dynamic oracle training,
error exploration, MLP-based non-linear scoring

function). We depart from the literature by replac-
ing the hand-crafted feature function over carefully
selected components of the configuration with a con-
catenation of BiLSTM representations of few promi-
nent items on the stack and the buffer, and training
the BiLSTM encoder jointly with the rest of the net-
work.

5 Graph-based Parser

Graph-based parsing follows the common structured
prediction paradigm (Taskar et al., 2005; McDonald
et al., 2005):

predict(s) = argmax
y∈Y(s)

scoreglobal(s, y)

scoreglobal(s, y) =
∑

part∈y

scorelocal(s, part)

Given an input sentences (and the corresponding
sequence of vectorsx1:n) we look for the highest-
scoring parse treey in the spaceY(s) of valid de-
pendency trees overs. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in (McDonald et al.,
2005). Arc-factored parsing decomposes the score
of tree to the sum of the score of its head-modifier
arcs(h,m):

parse(s) = argmax
y∈Y(s)

∑

(h,m)∈y

score
(

φ(s, h,m)
)

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature functionφ(s, h,m) assigning
sparse feature vector for an arc linking modifierm

to headh. We follow Pei et al (2015) and replace the
linear scoring function with an MLP.

The feature extractorφ(s, h,m) is usually com-
plex, involving many elements (see section 2.1). In
contrast, our feature extractor uses merely the BiL-
STM encoding of the head word and the modifier
word:

φ(s, h,m) = BIRNN(x1:n, h) ◦ BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y∈Y(s)

scoreglobal(s, y)

= argmax
y∈Y(s)

∑

(h,m)∈y

score
(

φ(s, h,m)
)

= argmax
y∈Y(s)

∑

(h,m)∈y

MLP (vh ◦ vm)

vi = BIRNN(x1:n, i)

Training The training objective is to set the Score
function such that correct treey is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
treey and highest scoring incorrect treey′. We de-
fine a hinge loss with respect to a gold treey as:

max
(

0, 1−max
y′ 6=y

∑

(h,m)∈y′

MLP (vh ◦ vm)

+
∑

(h,m)∈y

MLP (vh ◦ vm)
)

Each of the tree scores is the calculated by activating
the MLP on the arc representations. The entire loss
can viewed as the sum of multiple neural networks,
which is sub-differentiable. We calculate the gradi-
ents of the entire thing (including to the BiLSTM
encoder and word embeddings).

Labeled Parsing Up to now, we described unla-
beled parsing. A possible approach of adding la-
bels is to score the combination of an unlabeled arc
(h,m) and its labelℓ by considering the label as part
of the arc(h,m, ℓ). This results in|Labels|×|Arcs|
parts that need to be scored, leading to slow parsing
speeds and arguably a harder learning problem.

Instead, we chose to first predict the unlabeled
structure using the model given above, and then pre-
dict the label of each resulting arc. Using this ap-
proach, the number of parts stays small, enabling
fast parsing.

The labeling of an arc(h,m) is performed using
the same feature representationφ(s, h,m) fed into a
different MLP predictor:

label(h,m) = argmax
ℓ∈labels

MLPLBL(vh ◦ vm)[ℓ]

As before we use a margin based hinge loss. The la-
beler is trained on the gold trees.6 The BiLSTM en-
coder responsible for producingvh andvm is shared
with the arc-factored parser: the same BiLSTM en-
coder is used in the parer and the labeler. This
sharing of parameters can be seen as an instance of
multi-task learning (Caruana, 1997). As we show in
Section 6, the sharing is effective: training the BiL-
STM feature encoder to be good at predicting arc-
labels significantly improves the parser’s unlabeled
accuracy.

Loss augmented inference In initial experiments,
the network learned quickly and overfit the data. In
order to remedy this, we found it useful to useloss
augmented inference (Taskar et al., 2005). The in-
tuition behind loss augmented inference is to update
against trees which have high model scores and are
also very wrong. This is done by augmenting the
score of each part not belonging to the gold tree by
adding a constant to its score. Formally, the loss
transforms as follows:

max(0,1 + score(x, y)−

max
y′ 6=y

∑

part∈y′

(scorelocal(x, part) + Ipart6∈y))

Speed improvements The arc-factored model re-
quires the scoring ofn2 arcs. Scoring is performed
using an MLP with one hidden layer, resulting inn2

matrix-vector multiplications from the input to the
hidden layer, andn2 multiplications from the hid-
den to the output layer. The firstn2 multiplications
involve larger dimensional input and output vectors,
and are the most time consuming. Fortunately, these
can be reduced to2n multiplications andn2 vec-
tor additions, by observing that the multiplication
W · (vh ◦ vm) can be written asW 1 · vh +W 2 · vm
whereW 1 andW 1 are are the first and second half
of the matrixW and reusing the products across dif-
ferent pairs.
Summary The graph-based parser is straight-
forward first-order parser, trained with a margin-
based hinge-loss and loss-augmented inference. We
depart from the literature by replacing the hand-
crafted feature function with a concatenation of

6When training the labeled parser, we calculate the structure
loss and the labeling loss for each training sentence, and sum
the losses prior to computing the gradients.

BiLSTM representations of the head and modifier
words, and training the BiLSTM encoder jointly
with the structured objective. We also introduce a
novel MTL-based approach for labeled parsing by
training a second-stage arc-labeler sharing the same
BiLSTM encoder with the unlabeled parser.

6 Experiments and Results

We evaluated our parsing model on English and Chi-
nese data. For comparison purposes we follow the
setup of (Dyer et al., 2015).

Data For English, we used the Stanford Depen-
dency (SD) (de Marneffe and Manning, 2008) con-
version of the Penn Treebank (Marcus et al., 1993),
using the standard train/dev/test splitswith the same
predicted POS-tags as used in (Dyer et al., 2015;
Chen and Manning, 2014). This dataset contains a
few non-projective trees. Punctuation symbols are
excluded from the evaluation.

For Chinese, we use the Penn Chinese Treebank
5.1 (CTB5), using the train/test/dev splits of (Zhang
and Clark, 2008; Dyer et al., 2015) with gold part-
of-speech tags, also following (Dyer et al., 2015;
Chen and Manning, 2014).

When using external word embeddings, we also
use the same data as (Dyer et al., 2015).7

Implementation Details The parsers are imple-
mented in python, using the PyCNN toolkit8 for
neural network training. The code will be made
available on the first author’s website. We use the
LSTM variant implemented in PyCNN, and opti-
mize using the Adam optimizer (Kingma and Ba,
2014). Unless otherwise noted, we use the default
values provided by PyCNN (e.g. for random initial-
ization, learning rates etc).

The word and POS embeddingse(wi) ande(pi)
are initialized to random values and trained together
with the rest of parsers’ networks. In some exper-
iments, we introduce also pre-trained word embed-
dings. In those cases, the vector representation of a
word is a concatenation of its randomly-initialized
vector embedding with its pre-trained word vector.
Both are tuned during training. We use the same
word vectors as in Dyer et al (2015).

7We thank Dyer et al for sharing their data with us.
8http://www.github.com/clab/cnn/pycnn

During training, we employ a variant ofword
dropout (Iyyer et al., 2015), and replace a word with
the unknown-word symbol with probability that is
inversely proportional to frequency of the word. A
wordw appearing#(w) times in the training corpus
is replaced with the unknown symbol with a proba-
bility punk(w) = α

#(w)+α
. If a word was dropped

the external embedding of the word is also dropped
with probability of half.

We train the parsers for up to 30 iterations, and
choose the best model according to the UAS accu-
racy on the development set.

Hyperparameter Tuning We performed a very
minimal hyper-parameter search with the graph-
based parser, and use the same hyper-parameters for
both parsers. The hyper-parameters of the final net-
works used for all the reported experiments are de-
tailed in Table 1.

Word embedding dimension 100
POS tag embedding dimension 25

Hidden units inMLP 100
Hidden units inMLPLBL 100

BI-LSTM Layers 2
BI-LSTM Dimensions (hidden/output) 125 / 125

α (for word dropout) 0.25
paug (for exploration training) 0.1

Table 1: Hyper-parameter values used in experiments

Main Results Table 2 lists the test-set accuracies of
our best parsing models, compared to other state-of-
the art parsers from the literature.9

It is clear that our parsers are very competitive,
despite using very simple parsing architectures and
minimal feature extractors. When not using external
embeddings, the first-order graph-based parser with
2 features outperforms all other systems that are not
using external resources, including the third-order
TurboParser. The greedy transition based parser
with 4 features also matches or outperforms most
other parsers, including the beam-based transition
parser with heavily engineered features of Zhang
and Nivre (2011) and the Stack-LSTM parser of

9Unfortunately, many papers still report English parsing
results on the deficient Yamada and Matsumoto head rules
(PTB-YM) rather than the more modern Stanford-dependencies
(PTB-SD). We note that the PTB-YM and PTB-SD results are
not strictly comparable, and in our experience the PTB-YM re-
sults are usually about half a UAS point higher.

System Method Representation Emb PTB-YM PTB-SD CTB
UAS UAS LAS UAS LAS

This work graph, 1st order 2 BiLSTM vectors – – 93.2 91.0 86.4 84.8
This work transition (greedy) 4 BiLSTM vectors – – 92.8 90.7 86.0 84.3
This work transition (greedy) 11 BiLSTM vectors – – 92.9 90.7 85.6 83.9
ZhangNivre11 transition (beam) large feature set (sparse) – 92.9 – – 86.0 84.4
Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) – 92.8 93.1 – – –
Pei15 graph, 2nd order large feature set (dense) – 93.0 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition – – 92.4 90.0 85.7 84.1

This work graph, 1st order 2 BiLSTM vectors YES – 92.7 90.5 86.1 84.5
This work transition (greedy) 4 BiLSTM vectors YES – 93.3 91.1 86.6 85.0
This work transition (greedy) 11 BiLSTM vectors YES – 93.6 91.5 87.3 85.7
Weiss15 transition (greedy) large feature set (dense) YES – 93.2 91.2 – –
Weiss15 transition (beam) large feature set (dense) YES – 94.0 92.0 – –
Pei15 graph, 2nd order large feature set (dense) YES 93.3 – – – –
Dyer15 transition (greedy) Stack-LSTM + composition YES – 93.1 90.9 87.1 85.5
LeZuidema14 reranking /blend inside-outside recursive net YES 93.1 93.8 91.5 – –
Zhu15 reranking /blend recursive conv-net YES 93.8 – – 85.7 –

Table 2:Test-set parsing results of various state-of-the-art parsing systems on the English (PTB) and Chinese (CTB) datasets.The
systems that use embeddings may use different pre-trained embeddings. English results use predicted POS tags (different systems
use different taggers), while Chinese results use gold POS tags. PTB-YM: English PTB, Yamada and Matsumoto head rules.
PTB-SD: English PTB, Stanford Dependencies (different systems may use different versions of the Stanford converter).CTB:
Chinese Treebank.reranking /blend in method column indicates a reranking system where the reranker score is interpolated with
the base-parser’s score. The different systems and the numbers reported from them are taken from: ZhangNivre11: (Zhangand
Nivre, 2011); Martins13: (Martins et al., 2013); Weiss15 (Weiss et al., 2015); Pei15: (Pei et al., 2015); Dyer15 (Dyer etal., 2015);
LeZuidema14 (Le and Zuidema, 2014); Zhu15: (Zhu et al., 2015).

Dyer et al (2015). Moving from the simple (4 fea-
tures) to the extended (11 features) feature set leads
to very small improvements for English and small
accuracy losses in Chinese.

Interestingly, when adding external word embed-
dings the accuracy of the graph-based parserde-
grades. We are not sure why this happens, and leave
the exploration of effective semi-supervised parsing
with the graph-based model for future work. The
greedy parser does manage to benefit from the ex-
ternal embeddings, and with using them we also see
gains from moving from the simple to the extended
feature set. Both feature sets result in very com-
petitive results, with the extended feature set yield-
ing the best reported results for Chinese, and the
is ranked third for English, after the heavily-tuned
beam-based parser of Weiss et al (2015) and the
much more elaborate reranker-based neural parser
of Le and Zuidema (2014).

Additional Results We perform some ablation ex-
periments in order to quantify the effect of the dif-
ferent components on our best models (Table 3).
Loss augmented inference is crucial for the suc-
cess of the graph-based parser, and the MTL arc-

PTB CTB
UAS LAS UAS LAS

Graph (no ext. emb) 93.2 90.8 86.7 85.0
–ArcLabeler 92.3 – 85.5 –
–Loss Aug. 81.8 79.8 56.3 55.3
Greedy (ext. emb) 93.5 91.1 87.2 85.7
–DynOracle 93.2 91.0 87.3 85.8

Table 3:Ablation experiments results (dev set) for the graph-
based parser without external embeddings and the greedy parser
with external embeddings and extended feature set.

labeler contributes nicely to theunlabeled scores.
Dynamic-oracle training has mixed results on the
greedy parser, yielding small gains for English and
small drops for Chinese.

7 Conclusion

We presented a frustratingly effective approach for
feature extraction for dependency parsing based on
a BiLSTM encoder that is trained jointly with the
parer, and demonstrated its effectiveness by integrat-
ing it into two simple parsing models: a greedy tran-
sition based parser and a globally optimized first-
order graph-based parser, yielding very competitive
parsing accuracies in both cases.

Acknowledgements This research is supported by
the Intel Collaborative Research Institute for Com-
putational Intelligence (ICRI-CI) and the Israeli Sci-
ence Foundation (grant number 1555/15).

References

Rich Caruana. 1997. Multitask learning.Mach. Learn.,
28(1):41–75, July.

Danqi Chen and Christopher Manning. 2014. A Fast and
Accurate Dependency Parser using Neural Networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar, October. Association for
Computational Linguistics.

Kyunghyun Cho. 2015. Natural language under-
standing with distributed representation. CoRR,
abs/1511.07916.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford dependencies manual. Techni-
cal report, Stanford University.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. InProceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China, July. Association for
Computational Linguistics.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. InProc. of COL-
ING.

Jeffrey L. Elman. 1990. Finding Structure in Time.Cog-
nitive Science, 14(2):179–211, March.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for the arc-eager system. InProc. of COLING
2012.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the association for Computational
Linguistics, 1.

Yoav Goldberg. 2015. A primer on neural net-
work models for natural language processing.CoRR,
abs/1510.00726.

A. Graves. 2008.Supervised sequence labelling with
recurrent neural networks. Ph.D. thesis, Technische
Universität München.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory.Neural computation, 9(8):1735–
1780.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. InProc. of
ACL, July.

Ozan Irsoy and Claire Cardie. 2014. Opinion Mining
with Deep Recurrent Neural Networks. InProceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 720–
728, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep Unordered Com-
position Rivals Syntactic Methods for Text Classifica-
tion. InProceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1681–
1691, Beijing, China, July. Association for Computa-
tional Linguistics.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and Understanding Recurrent Networks.
arXiv:1506.02078 [cs], June.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization.arXiv:1412.6980
[cs], December.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
first dependency parsing with hierarchical tree lstms.
arXiv preprint arXiv:1603.00375, March.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. InProc. of ACL.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. InProc.
of ACL.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2008. Dependency Parsing.Synthesis Lectures on Hu-
man Language Technologies, 2(1):1–127, December.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. InProceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673–682, Portland, Oregon, USA,
June. Association for Computational Linguistics.

Phong Le and Willem Zuidema. 2014. The Inside-
Outside Recursive Neural Network model for Depen-
dency Parsing. InProceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 729–739, Doha, Qatar, October.
Association for Computational Linguistics.

Yann LeCun, Sumit Chopra, Raia Hadsell, M. Ranzato,
and F. Huang. 2006. A tutorial on energy-based learn-
ing. Predicting structured data, 1:0.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. InProceedings of the

52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1381–1391, Baltimore, Maryland, June. Association
for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marchinkiewicz. 1993. Building a large annotated
corpus of English: The penn Treebank.Computa-
tional Linguistics, 19.

Andre Martins, Noah Smith, and Eric Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. InProc. ACL/AFNLP.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. InProceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 617–622,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. InProc. of ACL.

Ryan McDonald. 2006.Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. InIncremental Parsing: Bringing
Engineering and Cognition Together, ACL-Workshop.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-
mental Dependency Parsing.Computational Linguis-
tics, 34(4):513–553, December.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An Ef-
fective Neural Network Model for Graph-based De-
pendency Parsing. InProceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 313–322, Beijing, China, July. Association for
Computational Linguistics.

M. Schuster and Kuldip K. Paliwal. 1997. Bidirectional
recurrent neural networks.IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681, November.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured prediction
models: a large margin approach. InProceedings of
the 22nd international conference on Machine learn-
ing, ICML ’05, pages 896–903, New York, NY, USA.
ACM.

Hillel Taub-Tabib, Yoav Goldberg, and Amir Glober-
son. 2015. Template kernels for dependency pars-
ing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1422–1427, Denver, Colorado, May–June.
Association for Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Network
Transition-Based Parsing. InProceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323–333, Beijing, China, July. Associa-
tion for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. InProc. of EMNLP.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015. A Re-ranking Model for Dependency
Parser with Recursive Convolutional Neural Network.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1159–
1168, Beijing, China, July. Association for Computa-
tional Linguistics.

