Noise-aware method for Speech Enhancement

reporter: 朱清扬

date: 2021.08.12

CONTENTS

1 Introduction

Basic methods and theoretical basis

3 Experiment results

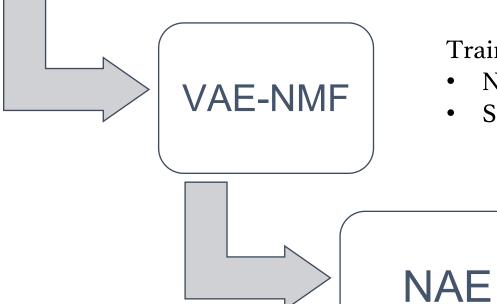
PART 01

Introduction

Introduction

Weiner Filtering

- the signal keeps stable
- Statistical properties remains the same.



Train for VAE-NMF

- NMF can just produce limited noise
- Standard VAE is sensitive to noise

PART 02

Basic methods and theoretical basis

Basic methods

Spectrum Subtraction

Spectral subtraction is based on a simple assumption: The noise in speech is only additive noise

let
$$D(w) = P_s(w) - P_n(w)$$

$$P'_s(w) = \begin{cases} D(w), & \text{if } D(w) > 0 \end{cases}$$

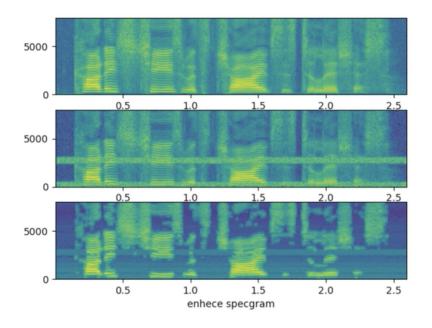
$$P'_s(w) = \begin{cases} 0, & \text{otherwise} \end{cases}$$

 P_n : Generally, it is assumed that the first N frames of the input speech is the silence time, that is, there is no voice input during this time, only noise, which can be called the floor noise.

- $\alpha > 1$: In this way, compared with the previous method, it can ensure a stronger denoising effect and can remove most of the noise, so that the residual noise will be much less.
- $0 < \beta \ll 1$: The advantage of setting a lower limit is that the residual peak is less significant.

let
$$D(w) = P_s(w) - \alpha P_n(w)$$

$$P_s'(w) = \begin{cases} D(w), & \text{if } D(w) > \beta P_n(w) \\ \beta P_n(w), & \text{otherwise} \end{cases}$$
with $\alpha \ge 1$, and $0 < \beta << 1$



Basic methods

Wiener Filtering

- **simple assumption**: The observed signal X (k) and the random noise b (k) (independent of the source signal) are zero-mean and steady-state.
- **General function** for SISO model: $_x00008$ _ $_x = s + n$; s = speech, n = noise, x = noisy data

$$\hat{s} = h * x$$
; \hat{s} : est. speech.

- main object: $min E(|\hat{s} s|^2)$ $J = E(|s|^2) - hP_{xs} - \bar{h}P_{xs}^- + |h|^2 P_{xx};$
 - $J = E(|S|^{-}) hP_{xs} hP_{xs} + |h|^{-}P_{xx};$ $P_{xs} = E(x\bar{s}); P_{xx} = E(|x|^{2})$
- Take the derivative with respect to y:

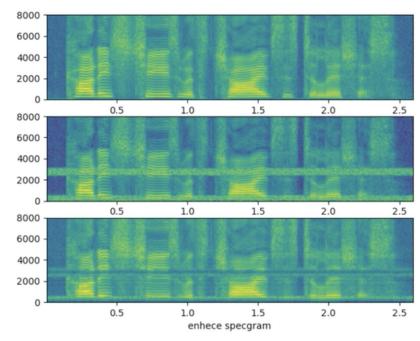
$$\frac{\partial J}{\partial h} = \bar{h}P_{xx} - P_{xs} = [hP_{xx} - P_{xs}]^* = 0$$

$$h = \frac{P_{xs}}{P_{xx}}$$

• In the case of speech enhancement : x = s + n, s and n are independent with zero means.

$$P_{xs} = P_{ss}$$

$$P_{xx} = P_{nn} + P_{ss}$$



VAE-NMF

Definitions:

- STFT domain: $(f, n) \in \{0, ..., F 1\} \times \{0, ..., N 1\}$ $noisy\ data\ X = (x_{f,n})$
- $\{speech\ data\ S = (s_{f,n})\}$ $noise\ data\ B = (b_{f,n})$
- Latent space: $Z = (z_n), Z \in \mathbb{R}^{L \times N}$

Aim:

To find the most appropriate parameters to the model:

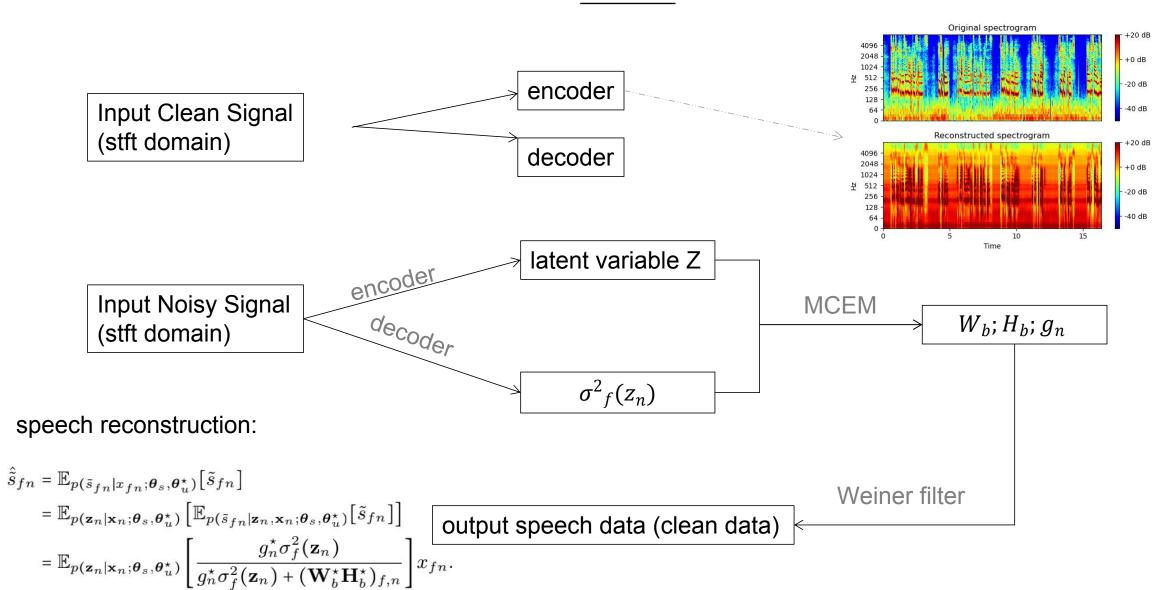
$$x_{f,n} = \sqrt{g_n} s_{f,n} + b_{f,n} .$$

Parameters:

- $s_{f,n} \sim N(0, \sigma^2_f(z_n)) : \sigma^2_f(z_n)$ is defined by a Decoder;
- $b_{f,n} \sim N(0, (W_b H_b)_{f,n}) : W_b H_b$ is a NMF of the noise vector;
- $\sqrt{g_n}$: represents a frame-dependent but frequency-independent gain.

VAE-NMF

baseline



VAE-NMF

MCEM

EM method

- \triangleright E-Step: Compute $Q(\boldsymbol{\theta}_u; \boldsymbol{\theta}_u^{\star}) = \mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}_s,\boldsymbol{\theta}_u^{\star})}[\ln p(\mathbf{x},\mathbf{z};\boldsymbol{\theta}_s,\boldsymbol{\theta}_u)]$
- \triangleright M-Step: Update $\theta_u^* \leftarrow \arg \max_{\theta_u} Q(\theta_u; \theta_u^*)$.

MH method:

- proposal distribution: $\mathbf{z}_n \mid \mathbf{z}_n^{(m-1)}; \epsilon^2 \sim \mathcal{N}(\mathbf{z}_n^{(m-1)}, \epsilon^2 \mathbf{I}).$
- acception: $\alpha = \min \left(1, \frac{p(\mathbf{x}_n \mid \mathbf{z}_n; \boldsymbol{\theta}_s, \boldsymbol{\theta}_u^{\star}) p(\mathbf{z}_n)}{p(\mathbf{x}_n \mid \mathbf{z}_n^{(m-1)}; \boldsymbol{\theta}_s, \boldsymbol{\theta}_u^{\star}) p(\mathbf{z}_n^{(m-1)})} \right),$

M-Step:

To maximize the Q function:

$$\mathbf{H}_b \leftarrow \mathbf{H}_b \odot \left[\frac{\mathbf{W}_b^{\mathsf{T}} \left(|\mathbf{X}|^{\odot 2} \odot \sum_{r=1}^{R} \left(\mathbf{V}_x^{(r)} \right)^{\odot - 2} \right)}{\mathbf{W}_b^{\mathsf{T}} \sum_{r=1}^{R} \left(\mathbf{V}_x^{(r)} \right)^{\odot - 1}} \right]^{\odot 1/2}$$

$$\mathbf{W}_b \leftarrow \mathbf{W}_b \odot \left[\frac{\left(|\mathbf{X}|^{\odot 2} \odot \sum_{r=1}^{R} \left(\mathbf{V}_x^{(r)} \right)^{\odot - 2} \right) \mathbf{H}_b^{\mathsf{T}}}{\sum\limits_{r=1}^{R} \left(\mathbf{V}_x^{(r)} \right)^{\odot - 1} \mathbf{H}_b^{\mathsf{T}}} \right]^{\odot 1/2}$$

$$\mathbf{g}^{\mathsf{T}} \leftarrow \mathbf{g}^{\mathsf{T}} \odot \left[\frac{\mathbf{1}^{\mathsf{T}} \left[|\mathbf{X}|^{\odot 2} \odot \sum\limits_{r=1}^{R} \left(\mathbf{V}_{s}^{(r)} \odot \left(\mathbf{V}_{x}^{(r)} \right)^{\odot - 2} \right) \right]}{\mathbf{1}^{\mathsf{T}} \left[\sum\limits_{r=1}^{R} \left(\mathbf{V}_{s}^{(r)} \odot \left(\mathbf{V}_{x}^{(r)} \right)^{\odot - 1} \right) \right]} \right]^{\odot 1/2}$$

Problem: $p(z|x,\theta_s,\theta_u)$ intractable!

distributions in model:

latent

$$\mathbf{z}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{I});$$

- speech $s_{fn} \mid \mathbf{z}_n; \boldsymbol{\theta}_s \sim \mathcal{N}_c(0, \sigma_f^2(\mathbf{z}_n)),$
- noise $b_{fn}; \mathbf{w}_{b,f}, \mathbf{h}_{b,n} \sim \mathcal{N}_c \left(0, (\mathbf{W}_b \mathbf{H}_b)_{f,n}\right)$
- mixed voice

$$x_{fn} \mid \mathbf{z}_n; \boldsymbol{\theta}_s, \boldsymbol{\theta}_{u,fn} \sim \mathcal{N}_c \left(0, g_n \sigma_f^2(\mathbf{z}_n) + (\mathbf{W}_b \mathbf{H}_b)_{f,n} \right)$$

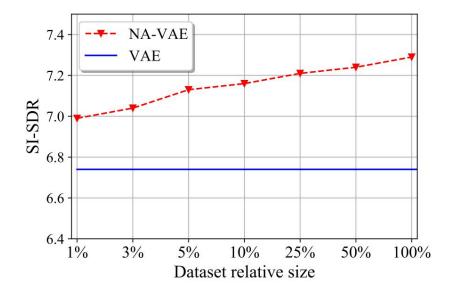
Variational Autoencoder for Speech Enhancement with a Noise-Aware Encoder

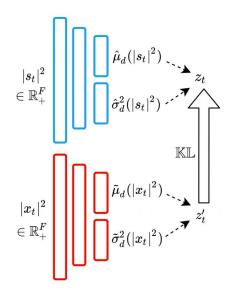
Two-step training (for encoder):

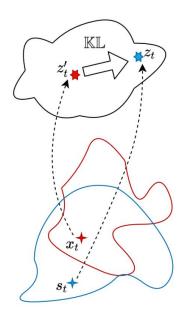
- Based on speech data, train an encoder, with the latent space Z.
- Based on noisy data, train the encoder to minimize:

$$\mathcal{L}(\gamma) = \sum_{t} \mathbb{KL}(q_{\phi}(z_{t}|s_{t})||q_{\gamma}'(z_{t}'|x_{t}))$$

$$= \sum_{t,d} \left\{ \frac{1}{2} \log \frac{\widetilde{\sigma}_{d}^{2}(|x_{t}|^{2})}{\widehat{\sigma}_{d}^{2}(|s_{t}|^{2})} - \frac{1}{2} + \frac{\widehat{\sigma}_{d}^{2}(|s_{t}|^{2}) + (\widehat{\mu}_{d}(|s_{t}|^{2}) - \widetilde{\mu}_{d}(|x_{t}|^{2}))^{2}}{2\widetilde{\sigma}_{d}^{2}(|x_{t}|^{2})} \right\}$$







- A technique to get the latent space: initialize the encoder with the trained data.
- Decoder got from traditional VAE, since the optimal mapping between latent space to clean data is difficult to get.

PART 03

Experiment results

Results

Data when train and test:

- clean_trainset_wav_16k: 11572pieces
- noisy_trainset_wav_16k: 11572 pieces
- clean(noisy)_testset_wav_16k: 2878pieces

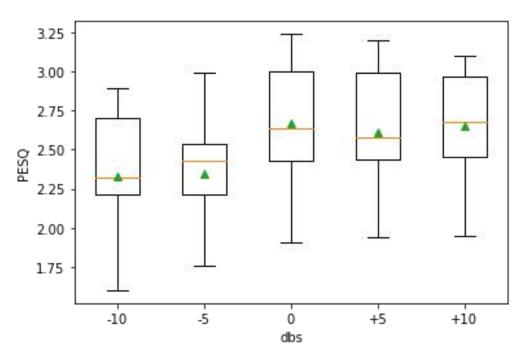


Figure 1. Performance comparison on PESQ with NAE on 5 different SNR cases.

SI-SDR	-10	-5	0	+5	+10
NAE	11.66	12.09	12.67	13.17	12.93
VAE-NMF	10.93	13.17	12.36	13.18	12.59
SS	7.89	10.81	10.90	11.19	11.01
WF	8.07	10.24	11.32	11.27	11.19
joint	10.90	12.13	12.19	12.38	12.56

Figure 2. Performance comparison on SI-SDR on 5 different SNR cases and trained and evaluated on 5 similar methods.

Results

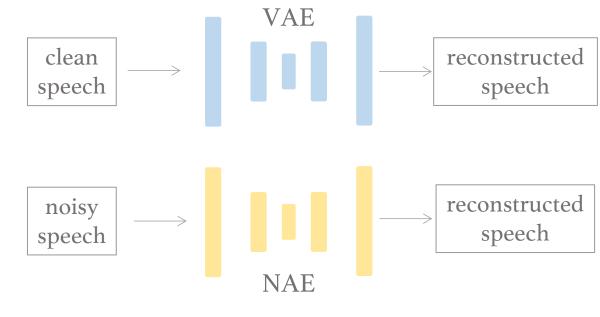
Data:

clean_testset_wav_16k add white noise: 2878 pieces

SI-SDR	-10	-5	0	+5	+10
NAE	10.98	12.76	12.18	12.98	13.32
VAE-NMF	10.65	11.45	12.32	13.24	12.95
SS	6.77	8.29	8.78	8.91	10.03
WF	8.11	8.24	9.45	9.27	9.19
joint	10.18	11.25	11.98	12.87	13.01

Figure 3. Performance comparison on SI-SDR on 5 different SNR cases and trained and evaluated on 5 similar methods.

Joint Training



$$loss = loss_{vae} + loss_{nae} + KL(z_{vae}|z_{nae})$$

THANKS FOR YOUR WATCHING

汇报人: 朱清扬