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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

 o
n 

D
ec

em
be

r 
13

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
D

ec
em

be
r 

13
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

D
ec

em
be

r 
13

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
D

ec
em

be
r 

13
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

D
ec

em
be

r 
13

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
D

ec
em

be
r 

13
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

D
ec

em
be

r 
13

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


learning (4, 14–16), fitting a more complicated
model requires more data, not less, in order to
achieve some measure of good generalization,
usually the difference in performance between
new and old examples. Nonetheless, people seem
to navigate this trade-off with remarkable agil-
ity, learning rich concepts that generalize well
from sparse data.
This paper introduces the Bayesian program

learning (BPL) framework, capable of learning
a large class of visual concepts from just a single
example and generalizing in ways that are mostly
indistinguishable from people. Concepts are rep-
resented as simple probabilistic programs—that
is, probabilistic generative models expressed as
structured procedures in an abstract description
language (17, 18). Our framework brings together
three key ideas—compositionality, causality, and
learning to learn—that have been separately influ-
ential in cognitive science and machine learning
over the past several decades (19–22). As pro-
grams, rich concepts can be built “composition-
ally” from simpler primitives. Their probabilistic
semantics handle noise and support creative
generalizations in a procedural form that (unlike
other probabilistic models) naturally captures
the abstract “causal” structure of the real-world
processes that produce examples of a category.
Learning proceeds by constructing programs that
best explain the observations under a Bayesian
criterion, and themodel “learns to learn” (23, 24)
by developing hierarchical priors that allow pre-
vious experience with related concepts to ease
learning of new concepts (25, 26). These priors
represent a learned inductive bias (27) that ab-
stracts the key regularities and dimensions of
variation holding across both types of concepts
and across instances (or tokens) of a concept in a
given domain. In short, BPL can construct new
programs by reusing the pieces of existing ones,
capturing the causal and compositional proper-

ties of real-world generative processes operating
on multiple scales.
In addition to developing the approach sketched

above, we directly compared people, BPL, and
other computational approaches on a set of five
challenging concept learning tasks (Fig. 1B). The
tasks use simple visual concepts fromOmniglot,
a data set we collected of multiple examples of
1623 handwritten characters from 50 writing
systems (Fig. 2) (see acknowledgments). Both im-
ages and pen strokes were collected (see below) as
detailed in section S1 of the online supplementary
materials. Handwritten characters are well suited
for comparing human andmachine learning on a
relatively even footing: They are both cognitively
natural and often used as a benchmark for com-
paring learning algorithms. Whereas machine
learning algorithms are typically evaluated after
hundreds or thousands of training examples per
class (5), we evaluated the tasks of classification,
parsing (Fig. 1B, iii), and generation (Fig. 1B, ii) of
new examples in theirmost challenging form: after
just one example of a new concept. We also in-
vestigatedmore creative tasks that asked people and
computational models to generate new concepts
(Fig. 1B, iv). BPL was compared with three deep
learning models, a classic pattern recognition
algorithm, and various lesioned versions of the
model—a breadth of comparisons that serve to
isolate the role of each modeling ingredient (see
section S4 for descriptions of alternative models).
We compare with two varieties of deep convo-
lutional networks (28), representative of the cur-
rent leading approaches to object recognition (7),
and a hierarchical deep (HD) model (29), a prob-
abilistic model needed for our more generative
tasks and specialized for one-shot learning.

Bayesian Program Learning

The BPL approach learns simple stochastic pro-
grams to represent concepts, building them com-

positionally from parts (Fig. 3A, iii), subparts
(Fig. 3A, ii), and spatial relations (Fig. 3A, iv).
BPL defines a generative model that can sam-
ple new types of concepts (an “A,” “B,” etc.) by
combining parts and subparts in new ways.
Each new type is also represented as a genera-
tivemodel, and this lower-level generativemodel
produces new examples (or tokens) of the con-
cept (Fig. 3A, v), making BPL a generative model
for generative models. The final step renders
the token-level variables in the format of the raw
data (Fig. 3A, vi). The joint distribution on types
y, a set of M tokens of that type q(1), . . ., q(M),
and the corresponding binary images I (1), . . ., I (M)

factors as

Pðy; qð1Þ;…; qðMÞ; I ð1Þ;…; I ðMÞÞ

¼ PðyÞ M

∏
m¼1

PðI ðmÞjqðmÞÞPðqðmÞjyÞ ð1Þ

The generative process for types P(y) and
tokens P(q(m)|y) are described by the pseudocode
in Fig. 3B and detailed along with the image
model P(I (m)|q(m)) in section S2. Source code is
available online (see acknowledgments). The
model learns to learn by fitting each condition-
al distribution to a background set of characters
from30 alphabets, using both the image and the
stroke data, and this image set was also used to
pretrain the alternative deep learning models.
Neither the production data nor any alphabets
from this set are used in the subsequent evalu-
ation tasks, which provide the models with only
raw images of novel characters.
Handwritten character types y are an abstract

schemaof parts, subparts, and relations.Reflecting
the causal structure of the handwriting process,
character parts Si are strokes initiated by pres-
sing the pendown and terminated by lifting it up
(Fig. 3A, iii), and subparts si1, ..., sini

are more
primitivemovements separated by brief pauses of
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Fig. 2. Simple visual concepts for comparing human and machine learning. 525 (out of 1623) character concepts, shown with one example each.
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate
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Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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conditions of the visual Turing test, examining
the necessity of key model ingredients in BPL.
Two lesions, learning to learn (token-level only)
and compositionality, resulted in significantly
easier Turing test tasks (80% ID level with 17 of 19
judges above chance and 65% with 14 of 26, re-
spectively), indicating that this task is a nontrivial
one to pass and that these two principles each
contribute to BPL’s human-like generative profi-
ciency. To evaluate parsing more directly (Fig. 4B),
we ran a dynamic version of this task with a dif-
ferent set of judges (N = 143), where each trial
showed paired movies of a person and BPL draw-
ing the same character. BPL performance on this
visual Turing test was not perfect (59% average
ID level; new exemplars (dynamic) in Fig. 6B),
although randomizing the learned prior on stroke
order and direction significantly raises the ID level
(71%), showing the importance of capturing the
right causal dynamics for BPL.
Although learning to learn new characters from

30 background alphabets proved effective, many
human learners will have much less experience:
perhaps familiarity with only one or a few alpha-
bets, along with related drawing tasks. To see
how themodels performwithmore limited expe-
rience, we retrained several of them by using two
different subsets of only five background alpha-
bets. BPL achieved similar performance for one-
shot classification as with 30 alphabets (4.3%
and 4.0% errors, for the two sets, respectively); in
contrast, the deep convolutional net performed
notably worse than before (24.0% and 22.3%
errors). BPL performance on a visual Turing test
of exemplar generation (N = 59) was also similar
on the first set [52% average ID level that was
not significantly different from chance t(26) = 1.04,
P > 0.05], with only 3 of 27 judges reliably above
chance, although performance on the second set
was slightly worse [57% ID level; t(31) = 4.35, P <
0.001; 7 of 32 judges reliably above chance].
These results suggest that although learning to
learn is important for BPL’s success, the model’s
structure allows it to take nearly full advantage
of comparatively limited background training.
The human productive capacity goes beyond

generating new examples of a given concept:
People can also generate whole new concepts.
We tested this by showing a few example char-
acters from 1 of 10 foreign alphabets and asking
participants to quickly create a new character
that appears to belong to the same alphabet (Fig.
7A). The BPLmodel can capture this behavior by
placing a nonparametric prior on the type level,
which favors reusing strokes inferred from the
example characters to produce stylistically con-
sistent new characters (section S7). Human judges
compared people versus BPL in a visual Turing
test (N = 117), viewing a series of displays in the
format of Fig. 7A, i and iii. The judges had only a
49% ID level on average [Fig. 6B, new concepts
(from type)], which is not significantly different
from chance [t(34) = 0.45, P > 0.05]. Individually,
only 8 of 35 judges had an ID level significantly
above chance. In contrast, a model with a lesion
to (type-level) learning to learn was successfully
detected by judges on 69% of trials in a separate

condition of the visual Turing test, and was sig-
nificantly easier to detect thanBPL (18 of 25 judges
above chance). Further comparisons in section
S6 suggested that the model’s ability to produce
plausible novel characters, rather than stylistic
consistency per se, was the crucial factor for
passing this test. We also found greater variation
in individual judges’ comparisons of people and
the BPL model on this task, as reflected in their
ID levels: 10 of 35 judges had individual ID levels
significantly below chance; in contrast, only two
participants had below-chance ID levels for BPL
across all the other experiments shown in Fig. 6B.
Last, judges (N = 124) compared people and

models on an entirely free-form task of generat-
ing novel character concepts, unconstrained by a
particular alphabet (Fig. 7B). Sampling from the
prior distribution on character types P(y) in BPL
led to an average ID level of 57% correct in a visual
Turing test (11 of 32 judges above chance); with
the nonparametric prior that reuses inferred parts
frombackground characters, BPL achieved a 51%
ID level [Fig. 7B and new concepts (unconstrained)
in Fig. 6B; ID level not significantly different
from chance t(24) = 0.497, P > 0.05; 2 of 25 judges
above chance]. A lesion analysis revealed that both
compositionality (68% and 15 of 22) and learning
to learn (64% and 22 of 45)were crucial in passing
this test.

Discussion

Despite a changing artificial intelligence land-
scape, people remain far better thanmachines at

learning new concepts: They require fewer exam-
ples and use their concepts in richer ways. Our
work suggests that the principles of composi-
tionality, causality, and learning to learn will be
critical in buildingmachines that narrow this gap.
Machine learning and computer vision research-
ers are beginning to explore methods based on
simple program induction (36–41), andour results
show that this approach can perform one-shot
learning in classification tasks at human-level ac-
curacy and fool most judges in visual Turing tests
of itsmore creative abilities. For each visual Turing
test, fewer than 25% of judges performed signif-
icantly better than chance.
Although successful on these tasks, BPL still

sees less structure in visual concepts than people
do. It lacks explicit knowledge of parallel lines,
symmetry, optional elements such as cross bars
in “7”s, and connections between the ends of
strokes and other strokes. Moreover, people
use their concepts for other abilities that were
not studied here, including planning (42), expla-
nation (43), communication (44), and conceptual
combination (45). Probabilistic programs could
capture these richer aspects of concept learning
and use, but only withmore abstract and complex
structure than the programs studied here. More-
sophisticated programs could also be suitable for
learning compositional, causal representations of
manyconceptsbeyondsimpleperceptual categories.
Examples include concepts for physical artifacts,
such as tools, vehicles, or furniture, that are well
described by parts, relations, and the functions
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Fig. 6. Human and machine performance was compared on (A) one-shot classification and (B)
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these structures support; fractal structures, such
as rivers and trees, where complexity arises from
highly iterated but simple generative processes;
and even abstract knowledge, such as natural
number, natural language semantics, and intuitive
physical theories (17, 46–48).
Capturing how people learn all these concepts

at the level we reached with handwritten charac-
ters is a long-term goal. In the near term, applying
our approach to other types of symbolic concepts
may be particularly promising. Human cultures
produce many such symbol systems, including
gestures, dance moves, and the words of spoken
and signed languages. As with characters, these
concepts can be learned to some extent from
one or a few examples, even before the symbolic
meaning is clear: Consider seeing a “thumbs up,”

“fist bump,” or “high five” or hearing the names
“Boutros Boutros-Ghali,” “Kofi Annan,” or “Ban
Ki-moon” for the first time. From this limited
experience, people can typically recognize new
examples and even produce a recognizable sem-
blance of the concept themselves. The BPL prin-
ciples of compositionality, causality, and learning
to learn may help to explain how.
To illustrate how BPL applies in the domain of

speech, programs for spoken words could be
constructed by composing phonemes (subparts)
systematically to form syllables (parts), which
compose further to form morphemes and entire
words. Given an abstract syllable-phoneme parse
of a word, realistic speech tokens can be gener-
ated from a causalmodel that captures aspects of
speechmotor articulation. These part and subpart

components are shared across the words in a
language, enabling children to acquire them
through a long-term learning-to-learn process.
We have already found that a prototype model
exploiting compositionality and learning to learn,
but not causality, is able to capture some aspects
of the human ability to learn and generalize new
spoken words (e.g., English speakers learning
words in Japanese) (49). Further progress may
come from adopting a richer causal model of
speech generation, in the spirit of classic “analysis-
by-synthesis” proposals for speech perception and
language comprehension (20, 50).
Although our work focused on adult learners,

it raises natural developmental questions. If chil-
dren learning to write acquire an inductive bias
similar to what BPL constructs, the model could
help explain why children find some characters
difficult and which teaching procedures are most
effective (51). Comparing children’s parsing and
generalization behavior at different stages of
learning and BPL models given varying back-
groundexperience couldbetter evaluate themodel’s
learning-to-learnmechanismsandsuggest improve-
ments. By testing our classification tasks on infants
who categorize visually before they begin drawing
or scribbling (52), we can askwhether children learn
to perceive characters more causally and composi-
tionally based on their own proto-writing experi-
ence. Causal representations are prewired in our
current BPL models, but they could conceivably
be constructed through learning to learn at an
even deeper level of model hierarchy (53).
Last, we hope that our workmay shed light on

the neural representations of concepts and the
development of more neurally grounded learning
models. Supplementing feedforward visual pro-
cessing (54), previous behavioral studies and our
results suggest that people learn new handwritten
characters in part by inferring abstract motor
programs (55), a representation grounded in pro-
duction yet active in purely perceptual tasks,
independent of specific motor articulators and
potentially driven by activity in premotor cortex
(56–58). Could we decode representations struc-
turally similar to those in BPL from brain imaging
ofpremotor cortex (or other action-oriented regions)
in humans perceiving and classifying new char-
acters for the first time? Recent large-scale brain
models (59) and deep recurrent neural networks
(60–62) have also focused on character recogni-
tion and production tasks—but typically learning
from large training samples with many examples
of each concept. We see the one-shot learning
capacities studied here as a challenge for these
neural models: one we expect they might rise to
by incorporating the principles of composition-
ality, causality, and learning to learn that BPL
instantiates.
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Spectroscopic characterization of
isomerization transition states
Joshua H. Baraban,1* P. Bryan Changala,1† Georg Ch. Mellau,2 John F. Stanton,3

Anthony J. Merer,4,5 Robert W. Field1‡

Transition state theory is central to our understanding of chemical reaction dynamics.We
demonstrate amethod forextracting transition state energies andproperties fromacharacteristic
pattern found in frequency-domain spectra of isomerizing systems.This pattern—a dip in the
spacings of certain barrier-proximal vibrational levels—can be understood using the concept
of effective frequency,weff.Themethod is applied to the cis-trans conformational change in the
S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier
heights derived from spectroscopic data agree extremely well with previous ab initio
calculations.We also show that it is possible to distinguish between vibrational modes that
are actively involved in the isomerization process and those that are passive bystanders.

T
he central concept of the transition state in
chemical kinetics is familiar to all students
of chemistry. Since its inception by Arrhe-
nius (1) and later development into a full
theory by Eyring,Wigner, Polanyi, and Evans

(2–5), the idea that the thermal rate depends
primarily on the highest point along the lowest-

energy path from reactants to products has re-
mained essentially unchanged. Most of chemical
dynamics is now firmly based on this idea of the
transition state, notwithstanding the emergence
of unconventional reactions such as roaming (6, 7),
where a photodissociated atomwanders before
abstracting from the parent fragment. Despite the
clear importance of the transition state to the field
of chemistry, direct experimental studies of the
transition state and its properties are scarce (8).
Here, we report the observation of a vibrational

pattern, a dip in the trend of quantum level spac-
ings, which occurs at the energy of the saddle
point. This phenomenon is expected to provide a
generally applicable and accurate method for
characterizing transition states. Only a subset of
vibrational states exhibit a dip; these states contain
excitation along the reaction coordinate and are
barrier-proximal, meaning that they are more

1338 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Department of Chemistry, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA. 2Physikalisch-
Chemisches Institut, Justus-Liebig-Universität Giessen,
D-35392 Giessen, Germany. 3Department of Chemistry and
Biochemistry, University of Texas, Austin, TX 78712, USA.
4Department of Chemistry, University of British Columbia,
Vancouver, BC V6T 1Z1, Canada. 5Institute of Atomic and
Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
*Present address: Department of Chemistry and Biochemistry,
University of Colorado, Boulder, CO 80309, USA. †Present address:
JILA, National Institute of Standards and Technology, and
Department of Physics, University of Colorado, Boulder, CO 80309,
USA. ‡Corresponding author. E-mail: rwfield@mit.edu

RESEARCH | RESEARCH ARTICLES



DOI: 10.1126/science.aab3050
, 1332 (2015);350 Science

 et al.Brenden M. Lake
induction
Human-level concept learning through probabilistic program

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): December 10, 2015 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/350/6266/1332.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2015/12/09/350.6266.1332.DC1.html 
can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/350/6266/1332.full.html#related
found at:

can berelated to this article A list of selected additional articles on the Science Web sites 

 http://www.sciencemag.org/content/350/6266/1332.full.html#ref-list-1
, 2 of which can be accessed free:cites 50 articlesThis article 

 http://www.sciencemag.org/cgi/collection/psychology
Psychology

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2015 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

D
ec

em
be

r 
13

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/2140485818/Top1/AAAS/PDF-Bio-Techne.com-WEBOE-W-006587/RNDsytems.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/350/6266/1332.full.html
http://www.sciencemag.org/content/suppl/2015/12/09/350.6266.1332.DC1.html 
http://www.sciencemag.org/content/350/6266/1332.full.html#related
http://www.sciencemag.org/content/350/6266/1332.full.html#ref-list-1
http://www.sciencemag.org/cgi/collection/psychology
http://www.sciencemag.org/

