ASR-Free Pronunciation Assessment

Sitong Cheng Zhixin Liu

Introduction

Goodness of Pronunciation (GOP)

• GOP is based on the posterior probability on the correct phone, given the speech segment of that phone

$$GOP = \frac{1}{M} \sum_{i}^{M} \ln p(q_i | o_i),$$

- q_i = i-th phone in the speech segment
- O_i = corresponding speech segment
- M = total number of phones in the speech segment
- If given a phone sequence q and the corresponding speech signal o, and assume the alignment is perfect

$$p(\mathbf{o}|\mathbf{q}) = \frac{1}{M} \sum_{i} \ln p(o_i|q_i) \qquad \qquad p(\mathbf{o}|\mathbf{q}) = \frac{1}{M} \sum_{i=1}^{M} \ln \frac{p(q_i|o_i)p(o_i)}{p(q_i)} \qquad \qquad \text{ignored}$$

Problems

- There is no guarantee that a worse pronunciation will achieve a smaller posterior!
- perfect pronunciation of q_2 :

 $p(q_2|o) = \frac{1}{1+e^{-a^2}}$

• non-native speaker pronounce q_2 at a position o

$$p(q_2|\mathbf{o}) = \frac{e^{-\delta^2}}{e^{-\delta^2} + e^{-(a+\delta)^2}} = \frac{1}{1 + e^{-(a^2 + 2a\delta)}}$$

If $\delta > 0$, the posterior essentially increases. This means that a non-native speaker obtains a better GOP than a native speaker.

Solutions:

ASR-free scoring

 We conjecture that it is the marginal part p(o) that solves the phone competition. Since p(o) concerns neither phones nor words, it is called an ASR-free scoring.

• Method

We cannot directly use p(o), since p(o) is quite noisy

 $p(o) \rightarrow p(z) \rightarrow p(s)$

Three Marginal models

 $p(o) \to p(z)$

i-vector model

Normalization flow

All vectors are trained with je-1520

Discriminative NF

Prediction model

 $p(z) \to p(s)$

- With SVR, we predict the score s directly, which can be regarded as a special form of the prediction distribution p(s|z) where all the probability mass concentrates in a single value.
- SVR train with je-1520, test with je-380.

Information fusion

Score fusion

$$s^* = \lambda p(\mathbf{q}|\mathbf{o}) + (1-\lambda) \arg \max_{s} \{p(s|\mathbf{o})\}$$

 $s^* = \lambda p(\mathbf{q}|\mathbf{o}) + (1-\lambda)\gamma(\mathbf{o})$

 $\gamma(\cdot)$ is the prediction function implemented by SVR

Feature fusion

• we treat the GOP score p(q|o) as a feature and combine it with the latent representation z, and then build the SVR model.

Experiments & Results

• All results use PCC

Basic results

	Human	GOP	GMM	NF
PCC	0.550	0.614	-0.065	-0.131

DNF + SVR

0.462

ASR-free scoring

NF + SVR

0.441

i-vector + SVR

0.434

PCC

Information fusion

		Score-fusion	Feature-fusion
	GOP + i-vector	$0.640 \ (\lambda = 0.38)$	0.625
-	GOP + NF	$0.663 (\lambda = 0.34)$	0.656
	GOP + DNF	$0.676 (\lambda = 0.36)$	0.667

Conclusion

 Our theoretical study shows that this scoring approach offers an interesting correction for the phone-competition problem of GOP, and empirical study demonstrated that combining the GOP and this ASR-free approach can achieve better performance than the GOP baseline.

Thank you !