Statistics decomposition for NL Scoring (SD-NL)

Di Wang 2020-11-17

What is NL?

- Normalized likelihood
	- $p(x|H_0)$: denotes as $p_c(x)$,which is a speaker-dependent item.
	- $p(x|H_0)$: denotes as $p_c(x)$,which is a speaker-dependent item.
• $p(x|H_1)$: denotes as $p(x)$,which is a speaker-independent item.

$$
NL(x | c) = \frac{p(x | H_0)}{p(x | H_1)} = \frac{p_c(x)}{p(x)}
$$

NL model

 $c₁$ *n I*

• A linear Gaussian model

 $p(x | u) = N(x; u, \sigma I)$ $p(u) = N(u; 0, \varepsilon I)$

$$
p(x) = \int p(x | u) p(u) du
$$

= $N(x; 0, (\varepsilon + \sigma)I)$

$$
NL(x | u_c) = \frac{p(x | u_c)}{p(x)}
$$

= $\frac{p_c(x)}{p(x)}$
= $\frac{p(x | x_1^c, x_2^c, ..., x_n^c)}{p(x)}$

 $p(x) = \int p(x | u) p(u) du$

Three components of NL

$$
NL(x | u_c) = \frac{p(x | u_c)}{p(x)} = \frac{p_c(x)}{p(x)} = \frac{p(x | x_c^c, ... x_n^c)}{p(x)} = \frac{\int p(x | u)p(u | x_c^c, ... x_n^c) du}{\int p(x | u)p(u) du}
$$

- Decouple NL to **three** components
	- Enrollment : $p(u | x_1^c, ... x_n^c)$ produces the posterior of class mean. \mathcal{C}_1 *c* \mathcal{C}_2 *c* \mathcal{C}_3 γ_n) proudce. $p(u|x_1^c, ...x_n^c)$ produces the
	- Prediction : $p(x | u)$ computes the likelihood of x belonging to class c.
	- Normalization : $p(x)$ computes the likelihood of x from all classes.

Why we need decouple ?

- Background :
	- In practice, the data could be quite complex.
	- NL/PLDA is modeled by between-var and within-var, and it uses the same statistics for different components, which is obviously unreasonable.
- Ideal:
	- The different components use their own optimal model.
- So we need decouple, and :
	- A high-level and global perspective that overlooks the distributional of the entire data.
	- A low-level and local perspective that scrutinizes the distribution of a single class.

How to implement decouple ?

- Enrollment $p(u | x_1^c, ... x_n^c)$ and Normalization $p(x)$ are relevant to a global generative model, e.g., PLDA. c_1 and R_2 n $\overline{)}$ and $\overline{ }$ $p(u|x_1^c,...x_n^c)$ and Normalization $p(x)$ are relevant
	- $p_g(u) = N(u; 0, \varepsilon I)$
	- $p_g(x | u) = N(x; u, \sigma I)$
- Predication $p(x|u_c)$ regards as a local model
	- $p_l(x|u) = N(x; u, \Sigma)$

$$
NL(x | u_c) = \frac{p(x | u_c)}{p(x)} = \frac{p_c(x)}{p(x)} = \frac{\int p_l(x | u) p_g(u | x_1^c, ... x_n^c) du}{\int p_g(x | u) p_g(u) du}
$$

Training process - Global

• Global training

• **ML-PLDA**
\n
$$
p(x_1,...x_n) \propto |\sigma|^{-\frac{n}{2}} |\epsilon I|^{-\frac{1}{2}} \left| \left(\frac{n}{\sigma} + \frac{1}{\epsilon} \right) I \right|^{-\frac{1}{2}}
$$
\n
$$
p(X) = p(x_1, x_2, \epsilon)
$$
\n
$$
\exp \left\{ -\frac{1}{2\sigma} \left\{ \sum_i ||x_i||^2 - \frac{n^2 \epsilon}{n \epsilon + \sigma} ||\overline{x}||^2 \right\} \right\}
$$
\n
$$
= \int p(x_1, x_2, \epsilon)
$$

where $|\cdot|$ defined is the absolute value of the determinant of a matrix. Given a training set consisting of K classes, the parameters ε and σ can be optimized by maximizing the likelihood function:

$$
L(\varepsilon,\sigma)=\sum_{c=1}^C p(x_1^c,...,x_{n_c}^c)
$$

where x_i^c is the i-th sample of the c-th class.

 \blacklozenge Inference :

$$
GivenX = \{x_1, x_2, ..., x_n\}
$$
\n
$$
p(X) = p(x_1, x_2, ..., x_n)
$$
\n
$$
= \int p(x_1, x_2, ..., x_n | u) p(u) du
$$
\n
$$
= \int p(x_1 | u) p(x_2 | u) ... p(x_n | u) p(u) du
$$
\n
$$
= \int \left| \left| \frac{p(x_1 | u) p(x_2 | u) ... p(x_n | u) p(u) du}{p(x_1 | u) p(u)} \right| \right|
$$
\n
$$
= \exp \left\{-\frac{1}{2\sigma} \left\{ \sum_{i} ||x_i||^2 - \frac{n^2 \varepsilon}{n \varepsilon + \sigma} ||\overline{x}||^2 \right\} \right\}
$$

Training process - Local

- Local training
	- MLLR $x^{'} = Mx$

$$
L(M) = \prod_{c}^{C} \prod_{i=1}^{n_c} \int p_i(x_i^c | u, \Sigma') p_g(u | x_1^c, ..., x_{n_c}^c) du
$$

=
$$
\prod_{c}^{C} \prod_{i=1}^{n_c} \int p_g(Mx_i^c | u, \sigma) p_g(u | x_1^c, ..., x_{n_c}^c) du
$$

=
$$
\prod_{c}^{C} \prod_{i=1}^{n_c} N(Mx_i^c; \frac{n_k \varepsilon}{n_k \varepsilon + \sigma} \overline{x}_k, I(\sigma + \frac{\varepsilon \sigma}{n_k \varepsilon + \sigma}))
$$

Basic results

EER(%) results on CNC.eval

EER(%) results on SITW

Statistics analysis

• Changes in kurtosis and skewness during training of iVector and XVector on CNC (dev set and test set).

Dimensional reduction

• The data is dimensionally reduced in two different ways and the performance in different dimensions is observed.

Relation to Length-norm(LN)

• The relationship between NL, SD/LT and standard LN was compared.

	Optimal results(EER)
Basic NL	19.79%
$+LN$	12.71%
$+SD/LT$	12.63%

EER(%) with x-vector(512) on CNC.eval EER(%) with x-vector(512) on SITW

	Optimal results(EER)
Basic NL	6.86%
$+LN$	4.51%
$+SD/LT$	5.91%

EER(%) with i-vector(400) on CNC.eval

EER(%) with i-vector(400) on SITW

Statistics analysis

• Why length-norm doesn't perform better than SD/LT.

first line : SD/LT second line : length-norm

Is within-var really equal to 1?

i-vector(400) on CNC

x-vector(512) on CNC

i-vector(400) on Voxceleb x-vector(512) on Voxceleb

Theoretical vs. statistical

• Considering that within-var is assumed to be equal to 1 in the scoring, which is not rigorous, so we replace within-var in the scoring of differ ent experiments.

EER(%) with *x-vector*(512) on *CNC.eval*

	Optimal(EER)		Optimal (EER)	
Basic(NL)		19.79%		Basic(
$+LN$	12.71%	SD/LT	12.63%	$+LN$
$+*LN$	12.60%		$*$ SD/LT 11.95%	$+$ *LN

EER(%) with i-vector(400) on *CNC.eval* EER(%) with i-vector(400) on *SITW*

EER(%) with *x-vector*(512) on *SITW*

	Optimal(EER)		Optimal (EER)
Basic(NL)		6.86%	
$+LN$	4.51%	SD/LT	5.91%
$+$ *LN	4.43%	*SD/LT	4.27%

Combine LN+SD/LT

• Combine LN+SD/LT and what will the performance be papered

EER(%) with *x-vector*(400) on *CNC.eval*

EER(%) with *i-vector*(512) on *CNC.eval*

	Optimal(EER)
Basic(NL)	15.56%
LN	15.69%
LN +SD/LT	15.69%

EER(%) with *x-vector*(512) on *SITW* EER(%) with *i-vector*(400) on *SITW*

Summary

- SD/LT works better than basic NL scoring.
- X-vector performs better than i-vector.
- Length-norm doesn't do very well on the complex data set.
- It is effective to replace theoretical statistics with actual statistics and has the best performance on SD/LT.
- Length-norm + SD/LT is useless.

Thank you !