Statistics decomposition for NL Scoring (SD-NL)

Di Wang 2020-11-17

What is NL?

- Normalized likelihood
 - $p(x|H_0)$: denotes as $p_c(x)$, which is a speaker-dependent item.
 - $p(x|H_1)$: denotes as p(x), which is a speaker-independent item.

$$NL(x \mid c) = \frac{p(x \mid H_0)}{p(x \mid H_1)} = \frac{p_c(x)}{p(x)}$$

NL model

• A linear Gaussian model

 $p(u) = N(u;0,\varepsilon I)$ $p(x | u) = N(x;u,\sigma I)$

$$p(x) = \int p(x \mid u) p(u) du$$

= $N(x;0, (\varepsilon + \sigma)I)$
 $NL(x \mid u_c) = \frac{p(x \mid u_c)}{p(x)}$
= $\frac{p_c(x)}{p(x)}$
= $\frac{p(x \mid x_1^c, x_2^c, ..., x_n^c)}{p(x)}$

 $p(x) = \int p(x | u) p(u) du$

Three components of NL

$$NL(x | u_{c}) = \frac{p(x | u_{c})}{p(x)} = \frac{p_{c}(x)}{p(x)} = \frac{p(x | x_{1}^{c}, \dots x_{n}^{c})}{p(x)} = \frac{\int p(x | u) p(u | x_{1}^{c}, \dots x_{n}^{c}) du}{\int p(x | u) p(u) du}$$

- Decouple NL to three components
 - Enrollment : $p(u|x_1^c, ..., x_n^c)$ produces the posterior of class mean.
 - Prediction : p(x | u) computes the likelihood of x belonging to class c.
 - Normalization : p(x) computes the likelihood of x from all classes.

Why we need decouple ?

- Background :
 - In practice, the data could be quite complex.
 - NL/PLDA is modeled by between-var and within-var, and it uses the same statistics for different components, which is obviously unreasonable.
- Ideal:
 - The different components use their own optimal model.
- So we need decouple, and :
 - A high-level and global perspective that overlooks the distributional of the entire data.
 - A low-level and local perspective that scrutinizes the distribution of a single class.

How to implement decouple ?

- Enrollment $p(u | x_1^c, ..., x_n^c)$ and Normalization p(x) are relevant to a global generative model, e.g., PLDA.
 - $p_g(u) = N(u;0,\varepsilon I)$
 - $p_g(x|u) = N(x;u,\sigma I)$
- Predication $p(x|u_c)$ regards as a local model
 - $p_l(x|u) = N(x;u,\Sigma')$

$$NL(x \mid u_{c}) = \frac{p(x \mid u_{c})}{p(x)} = \frac{p_{c}(x)}{p(x)} = \frac{\int p_{l}(x \mid u) p_{g}(u \mid x_{1}^{c}, \dots, x_{n}^{c}) du}{\int p_{g}(x \mid u) p_{g}(u) du}$$

Training process - Global

Global training

• ML-PLDA

$$p(x_1,...,x_n) \propto |\sigma I|^{-\frac{n}{2}} |\varepsilon I|^{-\frac{1}{2}} \left| (\frac{n}{\sigma} + \frac{1}{\varepsilon}) I \right|^{-\frac{1}{2}}$$

$$\exp\left\{ -\frac{1}{2\sigma} \left\{ \sum_i ||x_i||^2 - \frac{n^2 \varepsilon}{n\varepsilon + \sigma} ||\overline{x}||^2 \right\} \right\}$$

where $|\cdot|$ defined is the absolute value of the determinant of a matrix. Given a training set consisting of K classes, the parameters \mathcal{E} and σ can be optimized by maximizing the likelihood function:

$$L(\varepsilon,\sigma) = \sum_{c=1}^{C} p(x_1^c,...,x_{n_c}^c)$$

where x_i^c is the i-th sample of the c-th class.

◆ Inference :

$$Given X = \{x_1, x_2, ..., x_n\}$$

$$p(X) = p(x_1, x_2, ..., x_n)$$

$$= \int p(x_1, x_2, ..., x_n | u) p(u) du$$

$$= \int p(x_1 | u) p(x_2 | u) ... p(x_n | u) p(u) du$$

$$\propto |\sigma I|^{-\frac{n}{2}} |\varepsilon I|^{-\frac{1}{2}} \left| (\frac{n}{\sigma} + \frac{1}{\varepsilon}) I \right|^{-\frac{1}{2}}$$

$$\exp \left\{ -\frac{1}{2\sigma} \left\{ \sum_i ||x_i||^2 - \frac{n^2 \varepsilon}{n\varepsilon + \sigma} ||\overline{x}||^2 \right\} \right\}$$

Training process - Local

- Local training
 - MLLR x' = Mx

$$L(M) = \prod_{c}^{C} \prod_{i=1}^{n_{c}} \int p_{l}(x_{i}^{c} | u, \Sigma') p_{g}(u | x_{1}^{c}, ..., x_{n_{c}}^{c}) du$$
$$= \prod_{c}^{C} \prod_{i=1}^{n_{c}} \int p_{g}(Mx_{i}^{c} | u, \sigma I) p_{g}(u | x_{1}^{c}, ..., x_{n_{c}}^{c}) du$$
$$= \prod_{c}^{C} \prod_{i=1}^{n_{c}} N(Mx_{i}^{c}; \frac{n_{k}\varepsilon}{n_{k}\varepsilon + \sigma} \overline{x}_{k}, I(\sigma + \frac{\varepsilon\sigma}{n_{k}\varepsilon + \sigma}))$$

Basic results

EER(%) results on CNC.eval

	SD-LT (best)	NL
i-vector	15.44%	15.56%
x-vector	12.63%	19.79%

• Results on SITW

EER(%) results on SITW

	SD-LT (best)	NL
i-vector	15.44%	15.56%
x-vector	12.63%	19.79%

Statistics analysis

• Changes in kurtosis and skewness during training of iVector and XVector on CNC (dev set and test set).

dev set	skew	kurt
iVector	0.001239	0.303497
xVector	-0.001600	0.300418

test set	skew	kurt
iVector	0.003140	0.266604
xVector	0.004902	1.513297

Dimensional reduction

125

150

175

200

 The data is dimensionally reduced in two different ways and the performance in different dimensions is observed.

Dims (best/ <u>basic</u>)	EER
100/ <u>400</u>	7.11%/ <u>7.68%</u>
100/ <u>512</u>	4.81%/ <u>5.91%</u>
250/ <u>400</u>	15.39%/ <u>15.4</u> <u>4%</u>
250/ <u>512</u>	12.15%/ <u>12.6</u> <u>3%</u>
	(best/ <u>basic</u>) 100/ <u>400</u> 100/ <u>512</u> 250/ <u>400</u>

Relation to Length-norm(LN)

• The relationship between NL, SD/LT and standard LN was compared.

	Optimal results(EER)	
Basic NL	19.79%	
+LN	12.71%	
+SD/LT	<u>12.63%</u>	

EER(%) with x-vector(512) on CNC.eval

EER(%) with x-vector(512) on SITW

	Optimal results(EER)
Basic NL	6.86%
+LN	<u>4.51%</u>
+SD/LT	5.91%

EER(%) with i-vector(400) on CNC.eval

	Optimal results(EER)	
Basic NL	15.56%	
+LN	15.69%	
+SD/LT	<u>15.44%</u>	

EER(%) with i-vector(400) on SITW

	Optimal results(EER)
Basic NL	8.20%
+LN	<u>6.32%</u>
+SD/LT	7.68%

Statistics analysis

• Why length-norm doesn't perform better than SD/LT.

first line : SD/LT

second line : length-norm

Is within-var really equal to 1?

i-vector(400) on CNC

x-vector(512) on CNC

i-vector(400) on Voxceleb

x-vector(512) on Voxceleb

Theoretical vs. statistical

• Considering that within-var is assumed to be equal to 1 in the scoring, which is not rigorous, so we replace within-var in the scoring of different experiments.

EER(%) with *x-vector*(512) on *CNC.eval*

	Optimal(EER)		Optimal (EER)
Basic(NL)		19.79%	
+LN	12.71%	SD/LT	12.63%
+*LN	12.60%	<u>*SD/LT</u>	<u>11.95%</u>

EER(%) with i-vector(400) on CNC.eval

	Optimal(EER)		Optimal (EER)
Basic(NL)		15.56%	
+LN	15.69%	SD/LT	15.44%
+*LN	15.70%	*SD/LT	<u>15.44%</u>

EER(%) with *x-vector*(512) on *SITW*

	Optimal(EER)		Optimal (EER)
Basic(NL)		6.86%	
+LN	4.51%	SD/LT	5.91%
+*LN	4.43%	<u>*SD/LT</u>	<u>4.27%</u>

EER(%) with i-vector(400) on SITW

	Optimal(EER)		Optimal (EER)
Basic(NL)		8.20%	
+LN	6.32%	SD/LT	7.68%
+*LN	6.29%	*SD/LT	<u>6.12%</u> ¹⁵

Combine LN+SD/LT

• Combine LN+SD/LT and what will the performance be papered

EER(%) with *x-vector*(400) on *CNC.eval*

	Optimal(EER)
Basic(NL)	19.79%
LN	12.71%
LN +SD/LT	12.71%

EER(%) with *x-vector*(512) on *SITW*

	Optimal(EER)
Basic(NL)	6.86%
LN	4.51%
LN +SD/LT	4.54%

EER(%) with *i-vector*(512) on *CNC.eval*

	Optimal(EER)
Basic(NL)	15.56%
LN	15.69%
LN +SD/LT	15.69%

EER(%) with *i-vector*(400) on *SITW*

	Optimal(EER)
Basic(NL)	8.20%
LN	6. 32%
LN +SD/LT	6.18%

Summary

- SD/LT works better than basic NL scoring.
- X-vector performs better than i-vector.
- Length-norm doesn't do very well on the complex data set.
- It is effective to replace theoretical statistics with actual statistics and has the best performance on SD/LT.
- Length-norm + SD/LT is useless.

Thank you !