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ABSTRACT
Transfer learning, which leverages knowledge from source domains
to enhance learning ability in a target domain, has been proven
effective in various applications. A major limitation of transfer
learning is that the source and target domains should be directly re-
lated. If there is little overlap between the two domains, performing
knowledge transfer between these domains will not be effective. In-
spired by human transitive inference and learning ability, whereby
two seemingly unrelated concepts can be connected by series of in-
termediate bridges using auxiliary concepts, in this paper we study
a novel learning problem: Transitive Transfer Learning (abbrevi-
ated to TTL). TTL is aimed at breaking the large domain distances
and transferring knowledge even when the source and target do-
mains share few factors directly. For example, when the source and
target domains are text and images respectively, TTL can use some
annotated images as the intermediate domain to bridge them. To
solve the TTL problem, we propose a framework wherein we first
select one or more domains to act as a bridge between the source
and target domains to enable transfer learning, and then perform
the transferring of knowledge via this bridge. Extensive empirical
evidence shows that the framework yields state-of-the-art classifi-
cation accuracies on several classification data sets.
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Figure 1: An pictorial illustration of the transitive transfer
learning problem. In TTL, the source and target domains have
few common factors, but they can be connected by intermediate
domains through some underlying factors.
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1. INTRODUCTION
Transfer learning, which aims to borrow knowledge from source

domains to help the learning in a target domain, has been estab-
lished as one of the most important machine learning paradigms [18].
Various algorithms have been widely used and proven effective in
many applications, for example, classification [1, 6], reinforcement
learning [24] and recommendation systems [19], and so on. A crit-
ical requirement for successful transfer learning is that the source
and target domains should be related. This relation can be in the
form of related instances, features or models. If no direct relation
can be found, forcibly transferring knowledge will not work. In the
worst case, it could lead to having no improvement, or even worse
performance, in the target domain [21]. This is one of the major
limitations of traditional transfer learning. However, as human be-
ings, we naturally have the ability to carry out inference and learn-
ing via transitivity [7]. This ability helps humans connect many
concepts and transfer knowledge between two seemingly unrelated
concepts by introducing a few intermediate concepts as a bridge.
For example, after taking a class in elementary computer science,
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we may find it easier to transfer the knowledge to theoretical com-
puter science if we have taken an applied algorithm design course
in between, since the algorithm course may involve both concepts
in programming and theory. Likewise, having learned some basic
math, we may find it impossible to directly take a course in con-
vex optimization. However, this becomes feasible when we take
an intermediate course in linear algebra and probability. The linear
algebra and probability course serves as the intermediate domain
for knowledge transfer.

Human ability to conduct transitive inference and learning in-
spires us to study a novel learning problem known as Transitive
Transfer Learning (TTL). As illustrated in Figure 1, in TTL, the
source and target domains have few common factors, but they can
be connected by intermediate domains through some underlining
factors. We expect TTL to have wide practical applications. For
example, when the source domain is composed of text documents
and the target domain contains image data, they share no overlap
feature spaces, knowledge learned in text documents can hardly
be transferred to images. However, TTL can introduce some anno-
tated images to learn a feature mapping between these two different
feature spaces and have a smooth knowledge transfer. In other ap-
plications, such as text sentiment classification, all the data have
the same feature space, but two group of data may have large dis-
tribution gap, TTL can introduce some auxiliary intermediate data
to form a transitive knowledge transfer structure with which we can
obtain a more versatile sentiment classification system.

In this paper, we propose a learning framework for the TTL prob-
lem. The framework is composed of two steps. The first step is to
find an appropriate domain to bridge the given source and target do-
mains. The second step is to do effective knowledge transfer among
all domains. In the first step, we propose a probability model to se-
lect appropriate domains that is able to draw the source and target
domains closer, based on domain characteristics such as domain
difficulty and pairwise closeness. As data from different domains
are collected from different data sources, each pair of domains may
have distribution shift. In the second step, considering both of the
domain relationship and distribution shift, we propose a transfer
learning algorithm that allows to learn overlap features among do-
mains and propagate label information through them. A high-level
description of the TTL framework is summarized in Table 1. We
give a formal definition of the TTL problem in Section 2, and de-
scribe the technical details of these two steps in Sections 3 and 4
respectively.

2. PROBLEM DEFINITION
In the problem, we have labeled source domain data S={(xsi ,

yi)}ns
i=1, unlabeled target domain data T ={xti}nt

i=1, and k unla-
beled intermediate domains Dj = {x

dj
i }

nj

i=1, j = 1, . . . , k, x∗ ∈
Rm

∗
is a m∗ dimensional feature vector. The data from different

domains could have different dimensions. S and T have a large
distribution gap, thus directly transferring knowledge between them
may cause a substantial performance loss in the target domain.
The TTL framework is aimed at finding intermediate domain(s) to
bridge S and T , and minimizing the performance loss in T .

Formally, given a domain distribution gap measure g(·, ·), the
first step is to find an intermediate domain that satisfies g(S,T |Di)
< g(S,T ). The second step performs transfer learning from the
source domain S to target domain T via intermediate domainDi;
this is implemented via learning two feature clustering functions
psd(S,Di) and pdt(Di,T ), such that the distribution gap of data
on common feature clusters selected by psd(S,Di) and pdt(Di,T )
are further reduced. The label information in the source domain is

Table 1: The TTL Framework
Input: The source,target and candidate intermediate domains

Step 1: Intermediate domain selection (see Section 3)
Step 2: Transitive knowledge transfer (see Section 4)

Output: Prediction results in the target domain

propagated to the intermediate and target data on the selected com-
mon feature clusters.

3. INTERMEDIATE DOMAIN SELECTION
Intermediate domain selection is problem specific, different prob-

lems may have different strategies. For example, when the source
domain is composed of text data and the target domain is image
data, one can crawl some annotated images from Flickr as the in-
termediate domain data [22]. In other problems when there are
multiple candidate intermediate domains, one should propose some
selection algorithms according to domain properties. In this pa-
per, we propose an algorithm for text sentiment classification prob-
lem as an example. As studied by previous research, domain diffi-
culty [20] and domain distance [3] are two major factors that affect
the transfer learning performance between two domains. On one
hand, intuitively, if the source domain is less difficult than the in-
termediate and target domains, the model learned from the source
data is highly predictive and is very likely to achieve high perfor-
mance on the intermediate and target domains as well. On the other
hand, if the intermediate domain is able to draw closer the source
and target domains than their original distance, then the knowledge
transfer process between the source and target domains will have
less information loss. Hence, in this paper, we introduce domain
complexity [20] and A-distance [3] to estimate domain difficulty
and pairwise domain distance respectively. We summarize these
measures as follows:

• Domain complexity: domain difficulty measure is problem
specific, as different problem may have different feature types.
In this paper, we choose domain complexity [14, 20] to mea-
sure the difficulty. The domain complexity is calculated as
the percentage of long tail features that have low frequency.
These long tail features bring in long tail feature distribution
and significant feature diversity, thus make automatic ma-
chine learning difficult. We calculate the domain complexity
as follows:

cplx(D) =
|{x|c(x) < t× n}|

m
, (1)

For non-negative features, c(x) is the number of instances
whose feature x is larger than zero. |{x|c(x) < t × n}| is
the number of features that appear in less than t×n instances.
In this paper, we measure the domain complexity as the per-
centage of long tail features that appear in less than 10% in-
stances. For continuous features, we can measure their rela-
tive entropy as domain difficulty [20].

• A-distance: TheA-distance estimates the distribution differ-
ence of two sets of data samples that are drawn from two
probability distributions. Practically, given two sets of do-
main data Di and Dj , we can calculate the A-distance as
follows:

disA(Di,Dj) = 2(1− 2min
h∈H

error(h|Di,Dj)), (2)
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Table 2: Domain characteristic features
feature description

cplx_src (c1) source domain complexity
cplx_inter (c2) intermediate domain complexity
cplx_tar (c3) target domain complexity
dissiA (c4) a_distance between source and intermediate
disstA (c5) a_distance between source and target
disitA (c6) a_distance between intermediate and target

H is a hypothesis space, h is the optimal proxy classifier that
discriminates data points from different domains. In this pa-
per, we first assign the source data positive labels, and target
data negative ones, then use logistic regression as the proxy
classifier to estimate the error(h|Di,Dj)) in A-distance.
In [3], the authors have been proven that the prediction error
of the target domain is bounded by the error of the source
domain, the A-distance and some other constant factor.

Given a triple tr = {S,D,T }, we can extract six features as de-
scribed in Table 2. The first three features summarize individual
in-domain characteristics, the last three features capture the pair-
wise cross domain distances. These features together affect the
success probability of a transfer learning algorithm. However, it
is impossible to design a universal domain selection criteria, as dif-
ferent problems may have different preferences (weights) on these
features. To model the success probability of the introduced inter-
mediate domain, we propose the following logistic function:

f(tr) = δ(β0 +

6∑
i=1

βici), (3)

where δ(x) = 1
1+e−x . We estimate the parameters β = {β0, · · · ,

β6} to maximize the log likelihood defined as:

L(β) =
t∑
i=1

l(i) log f(tri) + (1− l(i)) log(1− f(tri)), (4)

l(i) is a binary label, indicating whether the intermediate domain
in the ith triple is able to bridge the source and target domains.
We get the label by the following strategy. We perform a semi-
supervised label propagation algorithm with input S and T , and
obtain a prediction accuracy accst on the target domain. We also
perform the same algorithm with input {S,D,T }, and obtain an-
other accuracy accsit on the target domain. If accsit > accst, we
set l(i) = 1, otherwise, l(i) = 0. The label is determined by both
the domain characteristics and the propagation model. A sophisti-
cated model may accept more intermediate domains than a simple
model. In this paper, we prefer to use a simple model such as KNN
that are able to provide us strictly fitted candidates.

We transform the intermediate domain selection problem to a
probability estimation problem. A candidate intermediate domain
with high f(tr) is more likely to be selected.

4. TRANSITIVE KNOWLEDGE TRANSFER
In the first step, an intermediate domain that can bridge the source

and target domains has been selected, however, there is still dis-
tribution shift among these domains. Thus, in the second step of
the TTL framework, we propose a novel transfer learning algo-
rithm that considers both of the transitive relationship and distri-
bution shift among all the domains. The algorithm is based on non-
negative matrix tri-factorization that can perform feature clustering

and label propagation simultaneously, so we first give some back-
ground knowledge.

4.1 Non-negative Matrix Tri-factorization
Non-negative Matrix Tri-factorization (NMTF) is a popular and

effective technique for data clustering and classification [10]. In
NMTF, the feature-instance matrix is decomposed into three sub-
matrices. In general, given a feature-instance matrix X ∈ Rm×n,
m is the number of dimensions, n is the number of instances. One
can obtain the factorized sub-matrices by solving the optimization
problem as follows:

argminF,A,GT L = ||X − FAGT ||, (5)

where || · || denotes the Frobenius norm of matrix.
The matrix F ∈ Rm×p indicates the information of feature clus-

ters and p is the number of hidden feature clusters. The element
Fi,j indicates the probability that the ith feature belongs to the jth
feature cluster.

The matrix G ∈ Rc×n is the instance cluster assignment matrix
and c is the number of instance clusters. If the largest element of the
ith row is located in the jth column, it means that the ith instance
belongs to the jth instance cluster. In the classification problem,
each instance cluster can be regarded as a label class.
A ∈ Rp×c is the association matrix. c is the number of instance

clusters or label classes, for the binary classification problem c = 2.
The element Ai,j is the probability that the ith feature cluster is
associated with the jth instance cluster.

4.2 NMTF for Transfer Learning
NMTF is also used as a basic technique for transfer learning al-

gorithms. Given the source and target domains S and T , Xs and
Xt are their feature-instance matrices respectively, one can decom-
pose these two matrices simultaneously, and allow the decomposed
matrices share some cross-domain information (sub-matrices). For-
mally, given two related domains S and T , their feature-instance
matrices can be decomposed simultaneously as follows:

LST = ||Xs − FsAsGs||+ ||Xt − FtAtGt||

=

∥∥∥∥Xs − [F 1, F 2
s ]

[
A1

A2
s

]
GTs

∥∥∥∥+ ∥∥∥∥Xt − [F 1, F 2
t ]

[
A1

A2
t

]
GTt

∥∥∥∥ ,
(6)

where F 1 ∈ Rm×p1+ andA1 ∈ Rp1×c+ contain the common factors
shared by the source and target domains. F 2

s , F
2
t ∈ Rm×p2+ and

A2
s, A

2
t ∈ Rp2×n+ contain domain-specific information. They are

not shared by domains. p1, p2 are two parameters that indicate the
number of hidden feature clusters. Gs ∈ Rn×c is the label class
matrix and generated from the instance labels {yi|i = 1, · · · , n}
of the source domain S. If the ith instance belongs to jth class,
then the (i, j) element in Gs equals to 1, otherwise, it equals to 0.
Gs is a constant matrix and keeps unchanged during the factoriza-
tion process. Gt is the label class matrix of the target domain. Its
elements are variables that we want to learn by the matrix decom-
position.

From Eq. (6), we can notice that the label information of the
source domain is propagated to the target domain through the shared
common factors F1 and A1.

4.3 The TTL Transfer Learning Algorithm
As shown in Figure 1, the source, intermediate and target do-

mains have a transitive relationship. In other words, the interme-
diate domain bridges the source and target domains, but has differ-
ent common factors to them respectively. Hence, to capture these
properties, we propose a coupled NMTF algorithm. The proposed
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Figure 2: An illustration of the proposed transfer learning al-
gorithm in the TTL framework. The algorithm learns two
coupled feature representations by feature clustering, and then
propagates the label information from the source to the target
domain through the intermediate domain on the coupled fea-
ture representation.

transfer learning algorithm is illustrated in Figure 2, and written in
Eq. (7)

L = ||Xs − FsAsGTs ||+ ||XI − FIAIGTI ||+

||XI − F
′
IA
′
IG

T
I ||+ ||Xt − FtAtGTt ||

=

∥∥∥∥Xs − [F̂ 1, F̂ 2
s ]

[
Â1

Â2
s

]
GTs

∥∥∥∥+ ∥∥∥∥XI − [F̂ 1, F̂ 2
I ]

[
Â1

Â2
I

]
GTI

∥∥∥∥+
∥∥∥∥XI − [F̃ 1, F̃ 2

I ]

[
Ã1

Ã2
I

]
GTI

∥∥∥∥+ ∥∥∥∥Xt − [F̃ 1, F̃ 2
t ]

[
Ã1

Ã2
t

]
GTt

∥∥∥∥ .
(7)

From the above equation, we can see that the first two terms (
||Xs − FsAsGTs || + ||XI − FIAIGTI ||) refer to the first feature
clustering and label propagation between the source and interme-
diate domains in Figure 2, the last two terms refer to the second
feature clustering and label propagation between the intermediate
and target domains. In Eq. (7), it is worth noting that we decompose
XI twice with different decomposition matrices, since XI shares
different knowledge with Xs and Xt respectively. At the same
time, we couple these two decomposition processes together by the
label matrixGI . It is reasonable that the instances in the intermedi-
ate domain should have the same labels in different decomposition
processes. Moreover, if we solve the matrix decomposition by it-
erative algorithms, in every iteration, each decomposition process
is able to consider the feedbacks from the other decomposition.
If these two processes are separately solved, the first decomposi-
tion process will not consider the results from the second one, and
may suffer from the bias problem. In the experiment, we find that
the coupled strategy achieves better performance than separated de-
composition.

Overall, the proposed learning algorithm fits the transitive rela-
tionship among domains. The label information in the source do-
main is transferred through F̂1 and Â1 to the intermediate domain,
and affects the learning results of GI . The knowledge on class la-
bels incorporated with GI from the intermediate domain is further
transferred to the target domain through F̃1 and Ã1.

As we discussed in Section 4.1, the decomposed matrix F con-
tains the information on hidden feature clusters, indicating the dis-
tribution of features on each hidden cluster. Therefore, the summa-
tion of each column of F has to be equal to one. The label matrix
G indicates the label distribution of each instance. Thus, the sum-
mation of each row of G has to be equal to one. Considering these

matrix constrains, we obtain the final optimization objective func-
tion for the proposed learning algorithm:

argmin
Fs,As,FI ,AI ,GI ,F

′
I
,A
′
I
,Ft,At,Gt

L
s.t.∑m

i=1 F̂
1(i, j) = 1,

∑m
i=1 F̂

2
s (i, j) = 1,∑m

i=1 F̂
2
I (i, j) = 1,

∑m
i=1 F̃

1(i, j) = 1,∑m
i=1 F̃

2
I (i, j) = 1,

∑m
i=1 F̃

2
t (i, j) = 1,∑c

j=1GI(i, j) = 1
∑c
j=1Gt(i, j) = 1.

(8)

Since the objective function in Eq. (8) is non-convex, it is in-
tractable to obtain the global optimal solution. Therefore, we de-
velop an alternating optimization algorithm to achieve the local op-
timal solution. We first show the updating rules of matrices F̃ 1, F̃ 2

I ,
F̃ 2
t , and Gt. We summarize the notations of matrix multiplications

in Table 3, and show the updating rules as follows:

F̃ 1(i, j) = F̃ 1(i, j)×
√

[M̃1
I
+M̃1

t ](i,j)

[T̃ 1
I
+T̃ 1

t ](i,j)
,

F̃ 2
I (i, j) = F̃ 2

I (i, j)×
√
M̃2

I
(i,j)

T̃ 2
I
(s,t)

,

F̃ 2
t (i, j) = F̃ 2

t (i, j)×
√
M̃2

t (i,j)

T̃ 2
t (s,t)

,

Gt(i, j) = Gt(i, j)×
√

[XT
t FtAt](i,j)

[GtA
T
t F

T
t FtAt](i,j)

.

(9)

From Eq. (8), after the matrices are updated, the constrained matri-
ces have to be normalized as:

F̃ 1(i, j) = F̃1(i,j)∑m
i=1 F̃

1(i,j)
, F̃ 2

I (i, j) =
F̃2
I (i,j)∑m

i=1 F̃
2
I
(i,j)

,

F̃ 2
t (i, j) =

F̃2
t (i,j)∑m

i=1 F̃
2
t (i,j)

, Gt(i, j) =
Gt(i,j)∑c

j=1 Gt(i,j)
.

(10)

The updating rules and normalization methods for other sub-
matrices are similar and are shown in the Appendix. We need
not update Gs, which contains the ground-truth label information.
We give the procedure of the proposed learning algorithm in Algo-
rithm 1. As shown in Eq. (7) and the Appendix section, the updat-
ing rule for GI is constrained by FI , F ′I , AI and A′I . In addition,
the sub-matrices F̂ 1, Â1 and, F̃ 1, Ã1 are constrained by Xs, Gs
andXt,Gt respectively. Therefore, the updating rule ofGt is tran-
sitively constrained by Xs, Gs and, the discriminative information
in the source domain is transitively transferred to the target domain.
The updating processes of Fs, FI , F

′
I and Ft refer to the feature

clusterings in Figure 2. The updating processes of GI and Gt refer
to the label propagations in Figure 2.

We analyze the convergence property of Eq. (9) with normaliza-
tion rules in Eq. (10). We first analyze the convergence of F̃ 1 with
the rest of the parameters fixed. By using the properties of trace
operation and frobenius norm ||X||2 = tr(XTX) = tr(XXT ),
we re-formulate the objective function Eq. (8) as a Lagrangian func-
tion and keep the terms related to F̃ 1:
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Table 3: Notations of matrix multiplications
M̂1

I = XIGIÂ
1T M̂2

I = XIGIÂ
2T

I M̂1
t = XtGtÂ

1T M̂2
t = XtGtÂ

2T

t

N̂I = F̂ 1Â1GTI + F̂ 2
I Â

2
IG

T
I N̂t = F̂ 1Â1GTt + F̂ 2

t Â
2
tG

T
t

T̂ 1
I = N̂IGIÂ1T T̂ 1

t = N̂tGtÂ1T T̂ 2
I = N̂IGIÂ2T

I T̂ 2
t = N̂tGtÂ2T

t

Ft = [F̂1F̂
2
t ] At = [Â1Â

2
t ]

Algorithm 1 The TTL Transfer Learning Algorithm
1: Input: Source, target, intermediate domains S, T and D, the

parameters p, and the number of iterations Itermax.
2: Initialize the matrices Fs, As, FI , AI , GI , Ft, At, Gt.
3: while iter < Itermax do
4: Update the sub-matrices of Fs,As, FI ,AI , Ft,At and label

matrices GI , Gt according to the updating rules given in
Eq. (9) and Eq. (12) of the Appendix section.

5: Normalize the sub-matrices of Fs, FI , Ft, and label ma-
trices GI , Gt according to the normalization rules given in
Eq. (10) and Eq. (13) of the Appendix.

6: end while
7: Output: the predicted results of Gt.

L(F̃ 1) = tr(−2XT
I F̃

1Ã1GTI + 2GIÃ
1T F̃ 1T ÑI)

+tr(−2XT
t F̃

1Ã1GTt + 2GT Ã
1T F̃ 1T Ñt)

+tr[λ(F̃ 1T 1m1TmF̃
1 − 21p1

T
mF̃

1)],

(11)

where λ ∈ Rp×p is a diagonal matrix. 1m and 1p are all-ones
vectors with dimension m and p respectively.

LEMMA 1. Using the update rule in Eq. (9) and normalization
rules in Eq. (10), the loss function in Eq. (11) will monotonously
decrease.

The proof of Lemma 1 is shown in the Appendix. The conver-
gence of other terms can be proven in the same way. According to
the convergence analysis on the update rules and the multiplicative
update rules [13], each update step in Algorithm 1 will not increase
Eq. (8). The objective has a lower bounded by zero. The conver-
gence of the proposed transfer learning algorithm is proven.

5. EXPERIMENTS
In this section, we perform three tests. The first test is designed

to analyze how the intermediate domain and model parameters af-
fect the performance of the TTL framework, and to evaluate the
convergence rate empirically. This is done by conducting experi-
ments on six synthetic text classification tasks generated from the
20Newsgroups data set 1.

The second test is designed to evaluate the TTL framework when
the source and target domain data have completely different struc-
tures. The experiments are conducted on the text-to-image data set.
The intermediate domains for all tasks in the data set are crawled
from Flicker.

1http://qwone.com/~jason/20Newsgroups/

Finally, the third test is designed to test the efficiency of the inter-
mediate domain selection algorithm and the transfer learning algo-
rithm in the framework. The experiments are conducted on some
text sentiment classification tasks 2. The data from different do-
mains have the same feature space but different distribution. More-
over, there are many candidate intermediate domains for each pair
of source and target domains.

5.1 Baseline methods
In the synthetic text classification and sentiment classification

tasks, all the data have the same feature space. We compare the
proposed framework with three baseline methods to verify the ef-
fectiveness.

The first baseline is SVM, which is a classical supervised learn-
ing algorithm. We use the linear kernel of SVM with the implemen-
tation in LibLinear3. The second one is the triplex transfer learning
(TriplexTL) algorithm, which is a state-of-the-art transfer learning
method implemented with NMTF [32]. The other transfer learn-
ing algorithm is LatentMap [25], which is also a state-of-the-art
transfer learning algorithm. It draws the joint distribution of two
domains closer by mapping the data to a low dimensional latent
space. The three baseline methods are tested under two different
settings. The first one is direct-transfer. We train the learners based
on the labeled data in the source domain and test them directly on
the data in the target domain. We use subscript ST to indicate the
methods under this setting in the following experiments, for ex-
ample, TriplexTLST and LMST . The second setting is a 2-stage
transfer learning process. We first apply TriplexTL/LM between
the source and the intermediate domain to predict the intermediate
domain labels, and then again apply TriplexTL/LM between the
intermediate domain and the target domain. The major difference
between this naive transitive transfer learning strategy and the pro-
posed transfer learning algorithm is that no iterative feature clus-
tering and label propagation is performed. We use subscript SIT
to represent methods under this setting, for instance, TriplexTLSIT
and LMSIT .

In the text-to-image data set, the data have different feature spaces.
The above mentioned baselines cannot handle these data. Hence,
we compare TTL with two heterogeneous transfer learning (HTL)
algorithms.

The first baseline is co-transfer [17]. It models the problem as
a coupled Markov chain with restart. The transition probabilities
of the Markov chain is construdture by using the intra-relationship
based on affinity metric among data in the source and target do-
mains, and the inter-relationship between the source and target do-
mains based on co-occurrence information of the intermediate do-

2http://www.cs.jhu.edu/~mdredze/datasets/
sentiment/
3http://www.csie.ntu.edu.tw/~cjlin/
liblinear/
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Figure 3: The problem setting of the 20Newsgroup data set.

main. The second one is HTLIC [31]4. It learns a new target feature
representation by using data from the source, intermediate and tar-
get domain data via the collective matrix factorization technique.
A SVM classifier is then learned on the new target feature repre-
sentation.

All methods in the experiments are performed ten times, and we
report their average performances and variances.

5.2 Synthetic text classification tasks

5.2.1 20Newsgroups Data Set
The 20Newsgroups is a hierarchical text collection, containing

some top categories like ‘comp’, ‘sci’, ‘rec’ and ‘talk’. Each cat-
egory has some sub-categories, such as ‘sci.crypt’ and ‘sci.med’.
We use four main categories to generate six tasks, in each of which
two top categories are chosen for generating binary categorization.
With a hierarchical structure, for each category, all of the subcat-
egories are then organized into three parts, where each part has
different subcategories and is of a different distribution. Therefore,
they can be treated as the source, intermediate and target domains,
respectively. To generate the transitive transfer learning setting, we
divide the vocabularies into two separated subsets Set A and Set B.
Then, we set the term frequencies of words in Set A of the source
domain to zero. Similarly, we set the term frequencies of words
in Set B of the target domain to zero. Therefore, the source and
target domains have no overlapping words. The problem setting on
this data set is illustrated in Figure 3, where the blocks with texture
indicate that the features have values. We can see that the source
and target domains have no shared features, but they have shared
features with the intermediate domain, respectively. Apparently,
the intermediate domains here can bridge the generated source and
target domains. We give a detailed description of the six tasks in
Table 4. The feature dimensions in these tasks range from 2405 to
5984. The number of instances in these tasks are around 7000.

5.2.2 Performance on synthetic tasks
In experiments, we compare the proposed framework with the

baseline methods on six text classification tasks.
The text classification tasks are very challenging. The source

and target domains have no overlapping features. The SVM clas-
sifiers trained with labeled source data have almost no discrimi-
native ability on the target data. From the results in Table 5, we
can see that the SVMST classifiers obtain a very bad performance.
Likewise, the source classifiers can barely be adapted for the tar-
get domain data. Hence, TriplexTLST and LMST obtain bad per-
formance also, but better than SVMST . The naive transfer learn-
4http://www.cse.ust.hk/~yinz/htl4ic.zip
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Figure 4: Performance with different intermediate domains.

ing algorithms, TriplexTLSIT and LMSIT , achieve relative good
performance, because they use the intermediate domain data as a
bridge to perform a 2-stage knowledge transfer. The proposed TTL
framework achieves the best performance. This can be ascribed to
the reason that TTL not only bridges the source and target domains
by using the intermediate domain data, but also has iterative fea-
ture clustering and label propagation loops where the knowledge
provided by the source domain can be deeply reshaped and reorga-
nized to be exploited for the target domain.

5.2.3 Performance with different intermediate domains
The intermediate domain plays an important role in bridging the

source and target domains. Hence, we also conduct some experi-
ments on the “comp-vs-talk” task to test the proposed TTL frame-
work when 1) the amount of labeled intermediate data increases;
2) the connection between the source/target and the intermediate
domains becomes weaker.

In the first setting, we compare TTL with TriplexTLIT that trans-
fers knowledge from labeled intermediate domain data to the target
data. We vary the amount of labeled intermediate data from 50 to
400. We randomly sample the labeled intermediate domain data
ten times, and show the average performance and variance in Fig-
ure 4(a). From the results, we can see that the performance of TTL
is better than TriplexTLIT when the amount of labeled intermedi-
ate domain data is small. However, when there is a large amount of
labeled intermediate data, the performance of TriplexTLIT is bet-
ter. The results are reasonable, because when we have large amount
of data that are near and adaptable to the target data, we need not
seek help from domains that are far away.

In the second setting, some overlap features in the intermedi-
ate domain are removed. We compare the TTL framework with
TriplexTLSIT . In each comparison experiment, we randomly re-
move d features ten times, and show the average performance and
its variance in Figure 4(b). From the results we can see that the
performance decreases as features are removed. The reason is that
the connection between the intermediate and source/target domain
becomes weaker when more features are removed.

5.2.4 Model Analysis
In the Appendix, we have theoretically proven the convergence

of the transfer learning algorithm in the TTL framework. Here we
test the convergence rate. We conduct an experiment on “comp-
vs-talk” task, and set the number of iterations to 100. We show
the objective value of Eq. (8) as the dashed line in Figure 5(a), and
see that after around five to ten iterations, the objective value ex-
periences almost no change. Similarly, we show the classification
accuracy of the target domain of each iteration as the solid line in
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Table 4: Dataset Description
Task Source Intermediate Target

rec-vs-comp autos : misc baseball : mac hockey : windows
rec-vs-talk autos : guns motorcycles : mideast hockey : misc
rec-vs-sci autos : electronics motorcycles : med hockey : space

sci-vs-comp electronics : graphics med : misc space : windows
sci-vs-talk crypt : guns electronics : mideast med : misc

comp-vs-talk graphics : guns misc : mideast windows : politic

Table 5: Accuracy (%) on the synthetic text classification tasks
SVMST TriplexTLST TriplexTLSIT LMST LMSIT TTL

rec-vs-comp 50.92 53.04± 1.87 56.74± 4.95 52.23± 2.97 55.34± 3.75 57.91± 3.27
rec-vs-talk 50.09 59.41± 9.74 61.67± 7.93 60.11± 7.22 60.97± 6.53 68.77± 1.61
rec-vs-sci 50.04 51.64± 1.44 51.95± 1.70 50.89± 2.13 51.23± 1.56 51.95± 0.98

sci-vs-comp 50.55 52.14± 2.65 55.93± 2.39 53.26± 2.95 55.29± 2.76 56.26± 2.14
sci-vs-talk 50.49 51.57± 2.07 52.80± 1.66 50.98± 2.14 52.69± 1.73 53.15 ± 1.53

comp-vs-talk 50.76 60.90± 9.35 64.08± 10.19 61.34± 9.73 64.58± 9.67 72.22± 3.20
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Figure 5: Convergence analysis and model parameter analysis.

Figure 5(a). The results show that there is no change in the per-
formance after 60-80 iterations. The convergence trends on other
tasks are similar.

We also analyze the model parameter p. We vary p from 5 to
100 to test how it affects the classification performance. The ex-
periments are also conducted on “comp-vs-talk” task. The results
are shown in Figure 5(b), from which we can see that the algorithm
achieves better performance when p is between 20 and 40. For
different tasks, we can use ten-fold cross validation to choose the
value. In this paper, we simply set p to be 30 in the experiments.

5.3 Text-to-image classification tasks

5.3.1 NUS-WISE data set
The NUS-WISE data set for heterogeneous transfer learning prob-

lem is generated by [17]. It contains 45 text-to-image tasks. Each
task is composed of 1200 text documents, 600 images, and 1600
co-occurred text-image pairs. The data in each task are about two
different categories, such as “boat” and “flower”. Therefore, we
can do binary classification for each task. There are 10 categories
in the data set, including “bird”, “boat”, “flower”, “food”, “rock”,
“sun”, “tower”, “toy”, “tree” and “car”. The text vocabulary size
is 500. Each text data is represented by a 500 dimensional bag-
of-word vector. For image data, we extract SIFT features [16] and
represent each image in a 512 dimensional feature vector. In this
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Figure 6: The classification accuracy on the tasks of the text-
to-image data set.

data set, our task is to transfer knowledge from source text docu-
ments to images through co-occurred text-image pairs.

5.3.2 Performance on text-to-image tasks
As HTLIC needs some labeled target domain data to train the

SVM classifier, in the text-to-image tasks, we assume all the source
domain data and a few target domain data are labeled. We vary the
amount of labeled data in the target domain from 5 to 25, and show
the average classification accuracies of all the tasks in Fig. 6(a),
from which we can see that the performance of each algorithm in-
creases when more labeled target data are used. We can also find
that SVM achieves the worst performance, since it considers no
auxiliary information. HTLIC and co-transfer achieve better per-
formance than SVM, since they successfully leverage some knowl-
edge from the source domain by using the intermediate domain
data. The proposed TTL framework obtains the best performance.
The reason is that TTL takes the distribution shift between three
domains into account and explicitly exploits the transitively shared
knowledge for label propagation from the source to the target do-
main.

We also report the detailed results on each individual task with
25 labeled target domain data. The classification accuracies and
variances on each task are shown in Fig. 6(b). The x-axis indicates
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the task and the y-axis represents the classification accuracy. We
sort the tasks by the performance of the proposed TTL framework
in ascend order. From the results, we can find that TTL is supe-
rior to other algorithms on most tasks and is always at the top. In
addition, TTL is more stable than other algorithms.

5.4 Sentiment classification tasks

5.4.1 Sentiment Classification Data set
The sentiment classification data set used in our experiment con-

sist of Amazon product reviews on 12 different categories, includ-
ing “Apparel”, “Books”, “Camera_&_photo”, “DVD”, “Electron-
ics”, “Health_&_personal_care”, “Kitchen_&_housewares”, “Mu-
sic”, “Sports_&_outdoors”, “Toys_&_games” and “Video”. Each
product review consists of review text and a sentiment label. The
data from different domains have different distributions. For ex-
ample, reviews in “Kitchen_&_housewares” may have adjectives
such as “malfunctioning”, “reliable” and “sturdy”. However, re-
views in the “DVD” domain may have “thrilling”, “horrific” and
“hilarious”. In this data set, the data within each domain are bal-
anced. One half of the data are positive reviews and the other half
are negative. The data size in each domain ranges from 2,000 to
20,000. The vocabulary size for each domain is around 20,000. We
randomly sample around 2,000 instances for each domain. From
the 12 domains, we can generate P 3

12=1,320 triples, such as <“Ap-
parel”, “Books”, “Camera_&_photo”> where “Apparel”, “Books”
and “Camera_&_photo” are the source, intermediate and target do-
mains respectively. We conduct experiments on all the 1320 triple
to evaluate the performance of the proposed intermediate domain
selection algorithm. We also conduct experiments on triples that
are selected by the intermediate domain selection algorithm to test
the proposed transfer learning algorithm in the TTL framework.

5.4.2 Intermediate Domain Selection
In order to evaluate the proposed intermediate domain selection

algorithm, we propagate labels from the labeled source domain data
to the unlabeled target domain data, and evaluate the prediction ac-
curacy accst on the target domain data. We also propagate labels
from the labeled source domain data to the unlabeled intermedi-
ate and target domain data by the same algorithm, and evaluate the
prediction accuracy accsit on the target domain data. In the exper-
iment, we use semi-supervised learning with RBF kernel [30] to do
label propagation. If accsit > t × accst, (t > 1.0), it means that
the intermediate domain data are able to bridge the source and tar-
get domain, and we assign a positive label to the triple. Otherwise,
we assign a negative label. In the experiment, we set t = 1.03, and
get 102 positive labels among 1,320 triples.

We then randomly split all the triples into two parts, each part
contains the same number of positive and negative triples. The first
part is used to train the intermediate domain selection algorithm,
the second part is for testing. Since the data are unbalanced, we
randomly sampled some negative triples to form a balanced data
set. We do the random sampling ten times. Each time, we use 10-
fold cross validation to assess the performance of the intermediate
domain selection algorithm on the first part. The average accuracy
is 0.845± 0.034.

5.4.3 Performance on Sentiment Classification Tasks
We also test the proposed transfer learning algorithm in the TTL

framework on some triples selected by the intermediate domain se-
lection algorithm with high confidence from the second part. We
learn the selection model on the training triples and select 10 triples
with highest confidence from the testing triple set. The selected

triples are listed in Table 6. Some results are interesting and ex-
plainable. For example, “video” domain is able to bridge the “mu-
sic” and “apparel” domains. Intuitively, most music review words
are about sound such as rhythm and melody. Most apparel reviews
may talk about the appearance like the color. The video reviews
contain both the vocal and visual aspects, and are able to draw the
music and apparel domains close.

From the results in Table 6, we can see that TriplexST has almost
the same results as SVMST . The direct transfer learning algorithm
here achieves no performance improvement. This is because the
source and target domains have large distribution gap. TTL and
TriplexSIT are better than TriplexST . We can also see that TTL
always achieves the best performance.

6. RELATED WORKS
We discuss two categories of research related to transitive trans-

fer learning: transfer learning and multi-task learning.
Transfer Learning solves the lack of class label problem in the

target domain by “borrowing” supervised knowledge from related
source domains [18]. There are mainly two typical types of al-
gorithms. The first one is instance based knowledge transfer [9,
23], which selects or adapts the weights of the relevant data from
source domains for the target domain. The second one is feature
based knowledge transfer [29], that transforms both source and tar-
get data into a common feature space where data follow similar dis-
tributions. More recently, multi-source transfer learning performs
transfer learning with multiple source domains. For instance, the
work in [26] extends TrAdaboost [9] by adding a wrapper boosting
framework on weighting each source domain. Different from pre-
vious transfer learning, transitive transfer learning does not assume
that the source domain and the target domain should be related.
That means, transitive learning can be more general and more use-
ful when the existing labeled and related source domains are not
adequate enough to improve the target domain.

Multi-task Learning algorithms simultaneously learn several
tasks together and mutually enhance the classification results of
each task [2, 4, 5]. It assumes that different tasks share some natu-
ral “compact” representations, such as the information reflected by
shared data clusters or subspaces. In practice, for example, classi-
fiers for different tasks can be designed to share some global param-
eters [11] or even a global classifier [8]. More recently, approaches
that learn the relationships between pairwise tasks are also being
developed [12, 27, 28]. However, these methods require reasonably
large amounts of labeled data for each task to learn the relationship.
In contrast, transitive transfer learning works even when both inter-
mediate and target domains are unlabeled. It only assumes that the
source domain should have sufficient labeling information to trans-
fer. The intermediate domain serves as a bridge between source
and target domains. Even if the intermediate domain is not labeled,
the classification information passed from the source domain still
contributes to the final classification task through the latent factors
learnt in the learning process.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we study a new problem, transitive transfer learn-

ing (TTL), which transfers knowledge from a source domain to an
indirectly related target domain with the help of some intermedi-
ate domains. We propose a TTL framework to solve the prob-
lem. The framework first selects one or more intermediate domains
to bridge the given source and target domains, and then performs
knowledge transfer along this bridge by capturing overlap hidden
features among them. The experiments are conducted on three data
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Table 6: Accuracy (%) on the Sentiment classification tasks
Source Intermediate Target SVMST TriplexST TriplexSIT TTL
music video apperal 78.41 78.57± 1.84 78.51± 1.24 79.21± 1.47

health_&_personal_care baby books 74.17 74.15± 1.20 74.26± 1.21 75.38± 1.51
dvd toys_&_games apparel 80.17 80.10± 1.46 81.11± 1.46 83.57± 1.34

music toys_&_games baby 75.94 76.64± 1.52 77.64± 1.46 81.22± 1.37
books camera_&_photo apparel 79.29 80.38± 1.34 80.98± 1.21 82.74± 1.04

sports_&_outdoors video books 71.29 72.25± 1.58 73.00± 1.67 76.01± 1.05
video baby camera_&_photo 77.00 78.43± 1.06 79.42± 1.03 81.07± 1.06
dvd kitchen_&_housewares baby 78.23 78.01± 1.13 81.11± 1.05 81.42± 1.03

electronics baby toys_&_games 81.17 81.60± 1.63 81.95± 1.49 82.12± 0.09
electronics baby kitchen_&_housewares 82.05 83.52± 1.02 84.50± 1.06 85.63± 1.04

sets, showing that the proposed framework achieves state-of-the-
art performance. The convergence of the proposed TTL framework
has also been theoretically and experimentally proven.

Future Work As a new learning problem, it raises several issues
for further exploration in the future. For example, when the source
and target need a string of domains to build a connection, how to
find the string of intermediate domains to enable max transfer is a
valuable research problem. In addition, extending the algorithm to
multiple source domains may be an interesting way to generalize
transitive transfer learning to be more powerful.
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Appendix

Table 7: Notations of matrix multiplications
M̂1

s = XsGsÂ
1T M̂2

s = XsGsÂ
2T

s M̂1
I = XIGIÂ

1T

M̂2
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2T

I N̂s = F̂ 1Â1GTs + F̂ 2
s Â

2
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T
s

T̂ 1
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2
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T
I

T̂ 2
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s T̂ 1
I = N̂TGT Â1T T̂ 2
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FI = [F̂1F̂
2
I ] AI = [Â1Â

2
I ]

F ′I = [F̃1F̃
2
I ] A′I = [Ã1Ã

2
I ]

We summarize some other matrix multiplication notations in Ta-
ble 7, and give the update rules for F̂s, Âs, F̂I and ÂI as follow:

F̂ 1(i, j) = F̂ 1(i, j)×
√

[M̂1
s+M̂1

I
](i,j)

[T̂ 1
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I
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Â1(i, j) = Â1(i, j)×
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(12)
The normalization methods for F̂s and F̂I are:

F̂s(i, j) =
F̂s(i,j)∑m

i=1 F̂s(i,j)
, F̂I(i, j) =

F̂I (i,j)∑m
i=1 F̂I (i,j)

, (13)

Convergence Analysis
We first analyze the convergence of F̂ 1 with the rest parameters
are fixed. By using the properties of trace operation and frobenius
norm ||X||2 = tr(XTX) = tr(XXT ), we re-formulate the ob-
jective function Eq. (8) as a Lagrangian function and keep the terms
related to F̂ 1:

L(F̂ 1) = tr(−2XT
s F̂

1Â1GTs + 2GsÂ
1T F̂ 1T N̂s)

+tr(−2XT
I F̂

1Â1GTI + 2GIÂ
1T F̂ 1T N̂I)

+tr[λ(F̂ 1T 1m1TmF̂
1 − 21p1

T
mF̂

1)],

(14)

where λ ∈ Rp×p is a diagonal matrix. 1m and 1p are all-ones
vectors with dimension ms and p respectively. The differential of
Eq. (14) is:

∂L(F̂1)

∂F̂1 = tr(−2XsGsÂ1T + 2N̂sGsÂ1T )

+tr(−2XIYtÂ1T + 2N̂tGtÂ1T )

+21m(1TmF̂
1 − 1Tp )λ,

(15)

Then, we obtain the temporary updating rule:

F̂ 1(i, j) = F̂ 1(i, j)×
√

[XsGsÂ1T +XIGI Â
1T +1m1T

p λ](i,j)

[N̂sGsÂ1T +N̂IGI Â
1T +1m1T

mF̂
1λ](i,j)

,

(16)
As proved in [15], the temporary update rule in Eq. (16) is able

to monotonously decrease the Eq. (14). Therefore, there is still
one variable λ that needs further calculation. Considering the con-
strains in Eq. (8), we find that λ is used to satisfy the conditions that
the summation of each column of F̂ 1 has to be equal to one. We
use the the normalization method in Eq. (13) to normalize F̂ 1. The
method satisfies the condition regardless of λ. After that, 1m1Tp λ

is equal to 1m1TmF̂
1λ. By getting rid of the terms that contain

λ, we get the final update rule in Eq. (12) that is approximately
equal to Eq. (16) in terms of convergence, since both 1m1Tp λ and
1m1TmF̂

1λ are constants. Using update rule in Eq. (12) will also
monotonously decrease the value of Eq. (14).

We can use similar methodology to analyze the convergence of
the update rules and normalization methods for other terms in Eq. (8).

According to the Multiplicative Update Rules in [13], using the
update rules in Eq. (9) and Eq. (12) and using the normalization
methods in Eq. (10) and Eq. (13), the value of the objective function
in Eq. (8) will not increase. The objective function has a zero lower
bound. The convergence of Algorithm 1 is guaranteed.
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